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CHAPTER 1

INTRODUCTION

The signal-to-noise ratio (SNR) of a biphase direct-sequence spread-
spectrum multiple-access (DS/SSMA) communication system has been found in
[11] and {12].- This system utilizes a binary phase-shift-keyed modulation
type. Conventional digital communication systems utilize other forms of
modulation advantageously. It is of interest then to extend the analysis
of [11] and [12] to new types of modulation. A DS/SSMA communication
system with offset quadriphase-shift-keyed (0QPSK) modulation was analyzed
in [4]. The knowledge of the effects of other types of modulation in an SSMA
system was thus extended.

We find that we can also extend the analysis to minimum-shift-keyed
(MSK) modulation, and by so doing we obtain improvements in both the SNR and
the 99 percent power bandwidth of a DS/SSMA communication system [1], [2].

A natural generalization is to consider a whole class of modulation
techniques of which an OQPSK/DS/SSMA system, as well as an MSK/DS /SSMA
system, is a special case.

We carry out a general analysis of an offset-quaternary direct-sequence
spread-spectrum multiple-access (0Q/DS/SSMA) system and examine the con-
siderations involved in choosing a type of modulation from a class.

Choésing a modulation type corresponds to choosing a chip waveform, which
will shortly be defined. We choose it considering the effects of this
choice on the system bandwidth, the SNR of the users, and the constant-
envelope character of the transmitted signals. We also allow the different
users in the system to utilize different chip waveforms, and hence have

different types of modulation.



CHAPTER 2
OFFSET-QUATERNARY DS/SSMA SYSTEM ANALYSIS

2.1 System Model

Let pT(t) be the unit rectangular pulse function defined as

1,0<t<T

Pp(t) =
0 , otherwise |,

and let (bén)) be the n-th, n € {1,...,2K}, binary data sequence (i.e.,

bén) € {+1,-1} for each £). The n-th binary data signal is then given by
-]
b (t) = Z b(n)pT(t-.ﬁT) ) 2.1

Let ¢n(t) be the n~th, n € {1,...,2K}, chip waveform, a signal which

is time-limited to [O’Tc] and which is normalized to satisfy
T
1 & .2
-f—f p(t)de =1 .
c 0
Notice that in this analysis each binary data sequence is transmitted with
a possibly different chip waveform. Let (a§n)) be the n-th, n € {1,...,2K]},

binary signature sequence (i.e., agn) € {+1,-1]} for each j).which repeats

with period N = T/Tc. The n-th spectral spreading signal is then given by
a (t) = I a§“)¢ (t-3T). (2.2)

Notice that a complete period of a signature sequence occurs during any

bit interval of duration T.



The 0Q/DS/SSMA communication system for K users transmitting equal

power is shown in Figure 2.,1. The analysis is easily modified at the final

stages when transmitted power varies among users. The transmitted signal

for the k-th user is the sum of an in-phase and quadrature component

5,.(E) = s, () + s(t) , (2.3)
where
sllc(t) = Aay, (t - )by (t - t;)cos (u_t+8,) (2.4)
and
SR(E) = Aay 1 (t)by  (t)sin(w t+8,) . (2.5)

Note that W, is the angular carrier frequency and that W, # ZH/TC.

Throughout the analysis to =-%\;Tc for some integer v. If t0 = vTc
for some integer v and y, (t) = Py (t) for k € {1,...,2K}, then
the DS/SSMA system has quadriphas:-shift-keyed (QPSK) modulation. Now
suppose t, = 32wy -%-l)Tc for some integer v. If ¢k(t) = Py (t) for
k € {1,...,2K}, then the system has staggered quadriphase-sﬁift-keyed
(SQPSK) modulation, and if y, (t) = Wz sin(mt/T )p, (t) for k € {1,...,2x},
then the system has minimum-shift-keyed (MSK) modu;ation.

The system model assumes a random delay T and a random carrier
phase Qk for each user k, k € {1,...,K}. It is assumed that the Ties for
k € {1,...,K} are independent identically distributed random variables
with distribution which is uniform on [0,T] and that the Bk for
k € {1,...,K} are independent identically distributed random variables with

distribution which is uniform on [0,2r]. This is done because we are
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Figure 2.1. 0Q/DS/SSMA Communication System Model
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concerned with phase angles modulo 2m and with time delays modulo T. Each
binary data sequence is modeled as a sequence of identically distributed
random variables taking values in {-1,+1} with equal probability; béj)
and bik) are assumed independent whenever j #kor g #n, If

T = [Tl,...,TK], 8 = [91,...,8K], and b is any vector of finite dimension
whose components are elements of the binary data sequences of any of the
users, then we a;sume b, T, and 8 are independent random vectors. In the
analysis we are concerned with @ = (g_-wcl)(mod 2m). Given b, T, and &
are independent with the g;ven distributions, it follows [2] that b, T,
and ¢ are independent and that the components of ¢ are independent

identically distributed random variables with distribution which is uniform

on [0,21]. The noise process n(t) is assumed to be additive white Gaussian

noise with two-sided spectral density % Ng- It arises from thermal effects
which are independent of physical phenomena influencing the other random

variables in the model.

In the analysis of the i-th receiver we assume synchronization and
are then concerned with i and Bk relative to T; and Bi, respectively.
We may then assume, for convenience, that Ty Si = 0. The results of the
analysis will remain the same. The receiver for each user is a
correlation receiver consisting of 2 branches with one branch matched

to Si(t) and the other matched to sg(t). The i-th receiver is shown

in Figure 2.2.
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Figure 2.2. Correlation Receiver for the i-th User



2.2 Signal-to-Noise Ratio Analysis

In the analysis of the i-th receiver we can conside__r the combined
random signals of all but the i-th transmitter as noise and thus compute
a signal-to-noise ratio (SNR) for each receiver branch. We first
consider the quadrature branch. The received signal is given by

K
r(t) = n(t) + Z Aazk_l(t: -'rk)bZk_l(t -Tk)sin(wct +_q:_k)
k=1

K
+ kil.AaZk(t - t0 -'rk)bZk(t -t -Tk)cos (wcr_:-l-cpk) . (2.6)
The output statistic 221_1 is given by
T
Zog.1 "™ Io r(t)a,, ,(t)sin(w t)dt . 2.7)

T 1-cos (cht)

2
0
for ZZi-l using this and similar approximations. Remembering Ty, < Gi =0,

Since CR >> T-l, J‘ dt =~ T/2 . We can simplify the expression

we have
2i-1
22:‘.-1 = n21-1 + % AT[bé ) + I, (2.8)
where
T
T j‘-o n(t)a,, ;(t)sin(w t)dt (2.9)
and
I = I
I=7 il{cos P jo Do (E=T)ag 1 (t=T)a,, ,(f)de
k#i
T
+sin(~p, ) j‘ by (tis £y =m A, (€ =t -Tk)azi_l(t)dt} . (2.10)
0

Letting x = (t0+'rk) (mod T) and p = (to-!-'rk-x)/T, we have



K T
_1 [ (2k-1) 7Tk
I-E Elifos mk[b-l Io aZk_l(t-Tk)aZi_l(t)dt
k#i a2 ]
+ g Df azk-l(t"rk)an-l(t)d“}
T
K
¥ y [6@0 o (toxya., . (e)dt
SloCeR | B s, Io T T B
T
# e | a2k(t-x)a21_1(t)dt] (2.11)
B X
and
r-1g pe-Lg T b R (r
=7 2 %% %P Rake1,2:-10 TP 2k-1,24-1(T1)
k#i
2k 2k) o
+ 51n(4$k)[:b51_; RZk,Zi-l(x)4-b:¢ )RZk,Zi-l(x)] . (2.12)

where the continuous-time partial crosscorrelation functions are defined by

=
R, ol = j‘o a_(t-T)a (t)dt (2.13)
and ;
5 T
Ry pl™ = ‘['T a_(t-7)a (t)de . (2.14)
Since E{I} = 0, Var{l} = E[Iz}. Using the independence and the
distributions of the random variables mentioned earlier, we have
K T
1 2 n2
var{i} =—3 £ [R (1 (T)+R (T
2T3 =l 5 2k-1,2i-1 2k-1,21i-1
k#i
+ R () + R2 d
2k,21-1T) +Ryp 95.1(7)4T (2.15)

and



1 2K .
var{1} =— T M 0e o +M ,
Sl i k,21-1""k, 2-1
k#£21,2i-1
where
T ,
mk i = \r Rk :i.('r )ar
-] O ]
and
T "2
ﬁk’i = Io R s (1)dr .

Defining the aperiodic crosscorrelation function

[ N-1-3
 a®,D o<y ana
:=0 j j+L
J—
c, .() = .
o {Nelit g
z a; ;5 2 , l=N=2 <20
juo 47¢ 3
\ 0 , || zx

and the partial crosscorrelation functions for the chip waveform

S
Rg,,n(s) = IO ‘Pm(t"'Tc - 5)¢n(t)dt, 0<s < Tc

and

T
e [
- j‘s g (t-s)y (t)dt , 0Ss<T ,

we can write

R (T) = Ck’i(ﬁ-N)ﬁE’i(T-ETc)-PCk’i(£+l-N)Ri,i(T—£Tc)

and

N

Rk,i(T)

Ck’i(z)ﬁi’i(T-zTc)-FCk’i(£+1)Ri,i(T-£Tc),

where 0 < T < T and ¢ = ]_T/TC_I.

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)
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We can now simplify (2.17) and (2.18) by writing

m z f(£+l)Tc 9 N-1 T,
g = .(T)dT = Z (T+£T ydr
k,i 2=0 5Tc Rk,; I ,1
N-1 oy P .8 :
& gio {og, g -mmy + 20y 3 U=NCy 5 UHL-MT +Cy ; (01N 4]
o e AR G2 SN 4 S Wy s+, UMy ;1 (2.24)
where
(] Te 'l 2 a4 Te o 2
mk,i s J‘O [Rp ;()17 ds, M, = ‘[IO [RY ;()1° ds , (2.25)
and
v et cord
- Io R ; (ORY  (s)ds . ; (2.26)
Similarly,
. L I .
; = Z (T AT )dr
mkal £4=0 'J10 Rk,l c
N—l Y Y :
= Lzﬂ{ck i(zxmk P 20 (0 WD 4 k Jerom (Y. @2

Substituting (2.24) and (2.27) into (2.16) yields

2K i +m! )
o k,24-1 %k 21-1 ¢
var I = 2 ﬁél ﬁp‘k,zi.-l(o)( 7 + b, 201 DM 9513
K#2i,2i-1 (2.28)
where
N-1
e, = 5 € G () (2.29)
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I1f we define

T ~
o2 =L &% (1) +R (nar, (2.30)
n,m 2T3 o D n,m
we may write from (2.16)
2K
2

Var I = & a o (2.31)
k=1 k,2i-1
k#2i,2i-1

and we see that the variance of the multi-user noise at the i-th receiver
may be decomposed into the sum of the variances of noise resulting from
each branch of each user's transmitter other than the i-th transmitter.

From (2.8), (2.31), and the definition of n(t),

2,2 2K

(2i-1) _ _ A°T 2
Var{ZZi_llbo = +1} = % NoT +=7— kil Ole,2i-1 * (2.32)
k#2i,2i-1
From (2.8) we can write the signal-to-noise ratio as
_ (21-1) _ -
SNR,; ; = % AT[Var{z,, ,|bg i (2:33)
If the energy per data bit is given by
E o e 2
8, = J’ [s,(t)1%dt = % A°T , (2.34)
o :
dlgebraic manipulations then yield (letting j = 2i-1)
Ny 22X, -%
SNR.={ =5+ Z o, . (2.35)
By k=1 o
k#21,2i-1

and
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.3 K m* +m"’ : 3
SW = 955 T e, (0)( >+uk,j(1)72k’j:| . (2.36)
k#21,21-1

By a similar analysis we may show that (2.35) and (2.36) hold for j =
This is evident without the analysis, however, by replacing Si by
Gi = (Gi'Fﬂ/Z) and noticing that from this new perspective, Zy5 with a

new t_. is the same as Z2 was from the original perspective.

0 i-1
Finally, it should be noted that for chip waveforms ¢k(t) and ¢.(t)
T T
which are symmetric about t = /2 (i.e., ¢k(t+' Z ) and ¢i(t4' S ) are

even functions),

~

Ri,i(s) = Rﬁ,i(Tc - (2.37)
and |

= b
=My - (2.38)

This can be used to simplify (2.36) to

Ny 5K . . %
SNR. = — + T Z 2.39
i), = “k,j(omk,j“k,j“mk,j] s
Kk#21,2i-1
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CHAPTER 3
THE CHOICE OF A CHIP WAVEFORM

3.1 Problem Definition

In the analysis of the 0Q/DS/SSMA communication system, we have required
each chip waveform ¢k(t), k € {1,...,2K}, to be time limited to {O,Thl.
If this restriction were not made, there would be intersymbol interference
at the i-th receiver, even if all but the i-th transmitter quit transmitting,
and the analysis would be more complicated. In addition we have for

T

convenience imposed a normalization comstraint, % I ¢ ¢§(t)dt = 1. A large
=

family of chip waveforms which satisfy these conditgons remain, and we are
left with the problem of choosing a chip waveform. We would like to choose
the chip waveform to simultaneously optimize the three system characteristics
mentioned in the following paragraphs while satisfying the two constraints
already mentioned.

A. Bandwidth

If we assume that outside the frequency range in which the SSMA
communication system operates are conventional users who compete for
bandwidth, the bandwidth the system utilizes should be as small as possible.
The measure of bandwidth which we will use is the 99 percent power bandwidth,
which is defined as the frequency range which contains 99 percent of the

transmitted energy.

B. Peak Transmitted Power

Transmitters are constrained to operate below a certain peak power
threshold in addition to being constrained to operate below an average

power level. The maximum allowed average power level, which maximizes the
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transmitted energy per bit, may not be attainable unless the envelope of

the total transmitted signal is constant. This is true, for example, when

the peak power threshold equals the maximum average power level. Additionally,
the constant-envelope characteristic of the total transmitted signal is
desirable if the signal is to be amplified by a nonlinear amplifier. If

the amplitude is constant, the signal will not be distorted in amplitude

by the nonlinearity.

C. Signal-to=-Noise Ratio

The SNR given in (2.36) is the performance index for the 0Q/DS/SSMA
commnication system which we would like to maximize

3.2 Approximations and Simplifications

Both the bandwidth which the SSMA communication system utilizes and the
SNR at a user's receiver are influenced by not only the chip waveforms, but
also the signature sequences which are used in the system. In this chapter
we will assume that the periodic binary signature sequences which are used
in the system are approximated by random binary sequences of length N as
described in [3]. We define a random binary sequence (xj) of length N to

be a sequence of N independent identically distributed random variables xj

for which Pr{xj==+1} = Pr[xj==-1} %, As part of our approximation, we
assume the now random vector g(k) = [aék),...,aéﬁi] for_k € [1,...,2K}

is independent of g(j) for j # k and the vectors T, 8, and b, which were
defined earlier. With this model we compute an expected spectral
density of any user's transmitted signal which depends solely on the chip

waveforms chosen for that user. 1In addition, only the choice of the chip

waveforms remains to influence the SNR.
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In much of this chapter we are concerned with the special case in
which there is a common chip waveform used throughout the system, This
T
; Cu. =
chip waveform § (t) is symmetric about Tc/2. By this we mean y(t+-—3) is

an even function of t.

3.2.1 Expected Spectral Density of the k-th User's Transmitted Signal

Let y(n) denote Iﬁﬂ . From (2.3), (2.4), and (2.5) we write the k-th

transmitted signal as

5. () = sp(8) +s% (©) 3.1)
where
B a  IOR)I(D1E .
sk(t) = A;E-nan by(n) ¢2k(t--t0 nTc)cos(wct-bek) (B2
and
Qry _ 4 o (2k-1), (2k-1) )
Sk(t) = A E'aa bY(ﬂ) ¢2k-1(t nTc)sin(wct-PGk) s (3.3)
Now we define the baseband components of the transmitted signal as
> 2k), (2k)
YZk(t) =AZ a.r(1 )bY(n) ¢2k(t't0'nTc) (3.4)
1= =
and
o (2k-1), (2k-1) )
ka_l(t) = Ani-man bY(n) ¢2k-1(t 'D.Tc) . (3.5)

Introducing a random delay TO’ which is assumed uniformly distributed
on [O,Tc] and independent of all other random variables which define the

k~-th transmitted signal, we can write

Sk(t - TO) =y2k(t - To)cos (wct +q;]:c) +y2k_1(t - To)sin(wct +U?1'c) , (3.6)
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where
@ = (O -~ Tp) (mod 2m). (3.7

We now have a wide-sense-stationary random process, and we may compute

its autocorrelation function.

@k and TO are independent, and_¢£ is uniform on [0,2rn]. This is

analogous to Py and-Tk being independent and Py being uniform on [0,21]

" in the system model. Using the mutual independence of b, Q(J) for
je{1,...,28}, TO’ and ¢i, where b is defined as in the system model, we

may write the autocorrelation function of the k-th transmitted signal as

RE(T) = E{sk(t-To)sk(t'+T -To)}
= sreliny 4 )
= B[R (1) +R(T) Jcos w T , (3.8)
where
Ry (1) = E{y, (£+7 = To)y, (£ =T} (3.9)
and
RR(T) = Elyy, 1 (E+1 =Ty 1(E-T} . (3.10)

Substituting (3.5) into (3.10) we find in a manner similar to [5] that

Qry = a2 5 a(2k-1)(2k-1) L (2k-1), (2k-1) .y
R SAECE an TR () Yaeen (BT B g by ) e (B Tp T
e B (2k-1), (2k-1),2
=A° X E{I[an by(n) ] }E{¢2k_1(t+-r -TO-nTC)¢2k_1(t-T0 - n’l:c)}

n=-m



-2z 1 (e (t+7 -p -n0T.) t-p-nT

e T ) g (BT =k - nT gy 4 (€@ - 0T )du
n=-= ¢ 0

2 = (DT

5 & ‘_r ¢2k-]_(t+‘r - “-)*Zk_l(t 'U‘)dp'
¢ n=-o nTc

H

2 =™

A

- R 2R LA L PR (LT
c -

I1f we define Ej(t) = ¢j(—t) for j € {1,...,2K}, we may write

R-E(T) = L-;_c I_ﬂ ’&Zk-l(- T=W) 4’21{_1(”-)‘:]41',

and since RE(T) = RE(-*r) we have

2 ™
R = 2= [ Vgpeq (™ =H)¥p g G
Cc -=

>

The power spectral density of this baseband signal is given by

[}

SR = FRI()]

2
= A 2
- Tc‘$[¢2k-1(t)]‘ 3

where ¥ denotes the Fourier transform. -A similar analysis yields

I

Rk('r)

0

A 2

= (- (W)du
C =

and

2
I 2
51 () = %;I?[qrzk(t)]l .

(3.

(3.

.

3.

(3.

3.

17

11)

12)

k)

14)

15)

16)
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Returning to (3.8) we can compute the power spectral density

S1(w) = FIRL()] . L SR

We see that it is just a frequency-shifted version of the sum of two
baseband power spectral densities which depend only on the chip waveforms.

3.2.2 Expected SNR at the i-th Receiver

In [3] it is shown that, for independent random sequences (agk))
and (a§i));
E{Ck’i(,z)ck’i(m)} =0 Vg,Vm:4 # m (3.18)
and
efc? ()} = n- |2] (3.19)
ki ’ ’

Returning to (2.29), we see that .

E[P-k’i(l)] =0 (3.20)
and
Fr N
E{p, (O} =T N-|2
il 4=1-N
= N2 ‘ (3.21)
We can now write (2.36) as
N 3 XK 2 =y -
SNR, =455~ + T ¥ N 7 " (3.22)
k#21,21i-1

where



- \J
Mi m'+ﬁ%1n1

¥ 1L ] L
mnm 2 2
2K i
and we see that minimizing X Wﬁ.j will maximize the SNR at the
k=1 ’
k#21,21-1

receiver branch corresponding to j.

3.3 A Useful Expression for ﬁz""k i
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(3.23)

Let Fﬁ(w) = ?[*k(t)] for k € {1,...,2K}, where ¥ denotes the Fourier

transform. We will find an expression for‘ﬁﬁzi, where k,i € {1,...,2K},

in terms of Fi(w) and Fg(w).

Remember that ¢k(t) = 0 for It] = '1‘c and consider the function
=
8,1 = [ ¥ (x+e)y (Bde .
-m -

I1f we examine this function, we find that

Ri’i(x-PTc) , “T,Sx<0

g 1 (0 = ﬁi,i(x) , 0<SxsT

0 s x>,

From (3.23) and (2.25) we have
=y _ Tcs, ]2+ ad (lzd
Mig,1 = % Io (R, 11T + IR ()] ds
However, from (3.25) we may write

= - a 2
My =%] g

-0

(3.24)

(3.25)

(3.26)

(3.27)
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and defining Gk i(w) = ?[gk i(x)], we have by Parseval's theorem
] 2

Tt = 2 4 16, @100 - .20

-0
Returning to (3.24), we may write

gk’i(x) = j T&k(x- t)y, (t)de , (3.29)

where ﬁk(t) = ¢, (-t). Since g . (x) is the convolution of Ek(t) and y, (t),

we have
Gy 3 @ = Fly (0)IF{y, (0]
= Fi(- w) Fg_(w) . (3.30)
From (3.28) we have
PR I AT OIS (3.31)

This shows that we can decrease the interference to the receiver branch
corresponding to i by the transmitter branch corresponding to k by
choosing chip pulses which have dissimilar spectral denmsities.

3.4 A Simple Example which Illustrates the System Trade-Offs

Suppose we let each chip waveform used in the system be the same

symmetric (about Tc/2) rectangular waveform {(t) which is defined as

i
c 1
Ja, 1--—)5t< 2(1+O[)

p(t) = (3.32)

0 , elsewhere

" where o 2 1.
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For this chip waveform

1
ot + (I-Q')Tc 5 Tc(l'a) <t=s Tc

R.Li(s) = 8.55)
0 , elsewhere
and
oY = rY =
Rk,i(s) Rk,i(Tc s) . (3.34)
From (2.25), (3.23), and (3.33)
T3
??zk’i =% " (3.35)

For ¢ = 1 this system is the standard offset quadriphase SSMA
communication system. If ¢ increases beyond 2, ni,i = 0, and we find that
the variance of the multi-user noise I is inversely proportional to ¢ and
that the bandwidth of the system is directly proportional to ¢. The peak

power is proportional to ,/y for o > 2.

3.5 Choice of the Chip Waveform Given a Desired Bandwidth

In this section we assume that each user is to use the same symmetric
chip waveform and that we must contain the transmitted signals in the system
within a given 997 power bandwidth. The goal is to maximize the SNR of
each user and to accept the peak transmitted power levels ﬁhich result.

We define £(t) = ¢(t-ch/2) and %[f(t)] = F(w). Since there is only

‘one chip waveform used in the system, we will simplify the notation by

letting ¢k(t) = §(t) for k € {1,...,2K} and defining ﬁ# =:ﬁﬁ_1 . We have

ﬁzt { =?§z¢ for any k,i € {1,...,2K}.
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3.5.1 Minimization ofﬁw with a Constraint Removed

From (3.31) we have
= lmj |58 (@) |

- LOICE (3.36)

-

and since f£(t) is an eéven function,
@
| =l 4 d
m o= - L F(p)dw - (3.37)

For a given bandwidth constraint we would like to minimize ﬁﬂ over
all choices of f£(t) which are time limited to [- E%,E%] and hence over all
choices of §(t) which are time limited to [O,Tc]. We cannot have f£(t)
both strictly band limited and strictly time limited [10]. We first find
the minimum of ﬁﬂ when f is not time limited and when its Fourier transform
F(w) vanishes outside the interval [-Q Q].

We start by defining G(w) = Fz(w) and considering W to be a random
variable which is uniformly distributed on [-Q ,2]. This allows us to use
Jensen's inequality, which states that for a strictly convex function
f(x) and a random variable X with associated probability distribution
F(x) concentrated on an interval of the real line, when the expectation
E{X} exists, E{f(X)} = £(E{X}). Furthermore, the inequality is strict
unless X is concentrated at a single point Xg-

Letting X = G(W) and f(x) = xz, we use Jensen's inequality to write

L £ ol 2
['z—n IQG(UJ)(!U}} =350 I G (w)dw , (3.38)
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with equality if and only if G(W) is a constant random variable. G(W) is
a constant random variable if and only if G(w) is a constant function on

[-Q,Q]. Since f(t) is even, by Parseval's theorem we may write

1, pt > 2
EIQ G(w)dw = L‘ £°(t)dt
=T, . (3.39)
From (3.38) and (3.39) we have
1 2 “Ti
. j:n ¢ (wdw = 7o 240

with equality if and only if G(w) is constant on [-0,Q]. From (3.37),
(3.40), and the definition of G(w) we have

n‘T2

7 - _C
m e 0 ? (3.41)
with équality if and only if |F(m)l is a constant function on [-Q,Q].
In summary, we have generalized the definition of ?72'” to include §(t)
which are not time limited. When we had F(w) strictly limited to the

interval [-Q,Q ], we obtained the bound (3.41)-
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3.5.2 Apprpximate Minimiz;tion of ﬁ? with the Constraint Added

We now constrain §(t) and hence £(t) to be strictly time limited.
This is the constraint we have assumed in the system model. We relax the
constraint of being strictly band limited. We instead constrain f£(t) to
have 99 percent of its energy in a given frequency range.

We are guided in our choice of f(t) by the results of the previous

section. Since ﬁﬁ was minimized there for
F(@) = k py(|o]) (3.42)

where k is a constant, we try to find a time-limited function f(f) for
which (3.42) nearly holds.

In [6]-[9] the prolate spheroidal wave functions are described. We
will state some of the dual results which follow by interchanging the roles

of the variables =-f and t, where w = 2rf and the transform pair is specified

by
> jwt
F(w) = [ £()e” 1% dte (3.43)
-G
and
1 jut
£(t) = 5= [ F(w)ed®" dw . (3.44)
-0
IR 2
Following [7], we adopt the notation Hf(x)[lA = I lf(x)] dx. We denote
-A

by Ei the class of all complex valued functions F(-2mf) on [-A,A] which satisfy

A
I ‘F(-Zﬁf)‘zdf < @, By .p we denote the subclass of Ei consisting of the

F(-2mf) whose inverse Fourier transforms vanish if 1t| > TC/Z.
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Given any W > 0 and any T > 0, we can find a countably infinite set
of real functions Qo(f), ¢1(f), ¢2(f) ... called the prolate spheroidal

wave functions and a set of real positive numbers A, = A > 9 L

0
called the eigenvalues with the following properties:

A. The_@i(f) are time limited, orthonormal on the real line, and

complete in JB:
- 0, 1 # j
[ 9; (g, (£)4f = Ll € 1058505 ) (3.45)
- 1, 1 = j

B. 1In the interval -W< f< W, the @i(f) are orthogonal and complete

in Iﬁ:

. 0, i #
[ 95 (E)p; (£)dE = f:3 '€ (0535250 5]  (3.46)
- ey 2 ]

C. For all values of f, real or complex,

W éin[ﬂTc(t-s)]
A9 (£) = [w ) p;(s)ds, 1€ {0,1,2,...}. (3.47)

Both the prolate spheroidal wave functions and the corresponding
eigenvalues are functions of ¢ = nTcW. For a fixed value of ¢, the li

fall off to zero rapidiy with increasing i, once i has exceeded (2/m)c = ZTCW.
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Remember that we have defined f(t) = ¢(t4—Tc/2) and F(w) = F[£(t)].
Since £(t) is even, we have

F(2rf) = F(-2nf), (3.48)

and since f£(t) = 0 for Itl > TC/Z, we can write

F(2mE) = ;io Anpn(f) . (3.49)
In what follows we define
[--]
A(E) = ;io A&pn(f) . (3.50)

Observing (3.37), we would like to find the Ai which minimize

- n=0

y @ o 4
=% [ z Ancpn(f)] df (3.51)
when we are subject to the constraint HA(E)H% = .99T . This is difficult,

but all is not lost.

We choose the Ai to approximate
B(£) = ke, (|£]), (3.52)

2
where k is some constant. Since the ¢i(f) are complete in IW, we have

by (3.46)

z B o (£) ) £ = w
B(f) = (3.53)
0 , £l >w,

where

W

1
B, =1 | ko (£)df . (3.54)
n -W e
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This constant function B(f) considered only on [-W,W] is not a piece of

the transform of a finite-energy time-limited function. This is

evident from the following argument. If we assume that it is a piece of

the transform of a finite-energy time-limited function, then it must be
analytic in the entire f plane. However, an analytic function in the

entire f plane which is constant on an interval must be a constant function.
This cannot be the case because the inverse transform of a constant function
of frequency is the unit impulse function. It is not a finite-energy

signal. Since B(f) is not a piece of the Fourier transform of a finite-

N
energy time-limited function, Z Bi grows without bound for increasing N.
n=0 =
If it did not grow without bound for increasing N, we would have X B&pu(f),

n=0
the transform of a finite-energy time-limited function, equal to B(f) on

[‘W,W].
Returning to (3.49), we attempt to minimize HA(f) -B(f)H; while

constraining the wild behavior for |f| z W by the equation
2
a2 - laels =& . (3.55)

Equation (3.55) states that the energy of f£(t) outside the frequency range

[-W,W] equals the quantity E. We may now begin to calculate the coefficients

An by writing

) > 2
|ace) - B(D;; = “u‘zo (An-Bn)tpn(f)HW . (3.56)
From (3.46)
g o 2
|aE) - B(DI; = = 4B A, (3.57)

n=0
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and from (3.46) and (3.55) we have

- -] 2 _
nEO AT(L-1) =E . (3.58)

Using a Lagrange multiplier u, we may find the coefficients of An which

minimize (3.57) subject to (3.55). We require

n=0

b o 2 -] 2 _
EA? [nio (An-Bn) ln+p.( z An(l-ln) -E>:l_ 0 (3.59)

for j € {0,1,...}. The equations (3.58) and (3.59) simplify for

j € {0,1,...} to

‘ Biky
ay = TedTg (3.60)

where u, a positive quantity, is given by

- Bixi(l-xn)
£ > =E . (3.61)
n=0 [w(l=2_)+2_]

The total energy of the signal f(t) is Tc’ so by Parseval's theorem,

(3.45), and (3.60) we have

2 = Bi"i
lalls = ¢ 5
0=0 [u(1-1_ )+ ]
-1 . (3.62)

We choose k in (3.52) to meet this requirement. The constraint that
99 percent of the signal energy is contained in [-W,W] becomes the

constraint that E = .Ol.Tc.
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The equations (3.60) and (3.61) specify the coefficients Aj in (3.50).
If we take the inverse Fourier transform of A(f) we obtain f(t) and therefore
y(t). This y(t) has 99 percent of its energy in [-W,W] and has been chosen
to result in a small value of 7/721’.

3.6 The Class of Constant-Envelope Signals

In this section we obtain a parametric representation of any two chip
waveforms $l(t) and $2(t) which produce a constant-envelope transmitted
signal. The chip waveforms $l(t) and ¢2(t) are used in the quadrature and
in-phase branches of the transmitter, respectively. We define for j =1
and j = 2

®

tfj(t) = & c§3)¢j(t-nrc) , (3.63)

n=-o

where cijj is a variable which takes values in {-1,+1]. We constrain the

offset parameter t. to satisfy ty = %(Zv-bl)Tc in our system model. This

0

allows us to write the envelope of a user's total transmitted signal as
-2 -2 %
e(t) = [¢1(t)+¢2(t-'rc/2)] " (3.64)

If the total transmitted signal has a constant envelope, we may

write it as
s(t) = 42 cos(u t+8+6(t)) , (3.65)

where ¢(t) is slowly varying relative to the quantity w,t. Expanding this,

we have

s(t) =.J§ cos¢(t)cos(wct-+8) -qﬁ'sin$(t)sin(wct4-9) (3.66)
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We represent §.(t) and §,(t) parametrically by
Y1 ¥y

§,(t) = 42 sin ¢(t) (3.67)

and

Ezct) = A2 cos ¢(t) . (3.68)

In (3.67) and (3.68) ¢(t) has certain restrictions. It must satisfy
#(0) = km, k € I, where I represents the set of integers, in order to
satisfy @1(0) = 0. During each time interval [nTc/Z,(n+1)Tc/2], n€l, ¢(t)

must undergo a net phase change of 1/2 radians in order for both @l(t) to

_ (2k+1)T
be zero for t = ch and ¢2(t) to be zero for t = — > where k € I.
If k € I, we have
- Jo(e) ~gGr )| = B(t) for kT S € < (Zk—;lnc (3.69)
and
(o) -at EEDT 1| = y(o) for EEDT < ¢ < DT,  (3.70)

where B (t) and y(t) are functions satisfying B(0) = y¥(0) = 0 and
ﬂ(TC/2) = Y(TC/Z) = m/2 . Equations (3.69) and (3.70) are required since
the shape of the chip waveform must not change over time.

We do have flexibility in choosing B(t) and y(t). By the identity
cos(p(t) + m/2) = + sin ¢ (t), we see that the condition B(t) = y(t) is
equivalent to the condition wl(t) = wz(t). We see that shaping B (t)
shapes the left half of ¢l(t) and the right half of ¢2(t). Shaping vy(t)
shapes the right half of ¢l(t) and the left half of ¢2(t). Although the

combined normalization
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T
- foc HOR RO (3.71)
c

is satisfied for all constant-envelope chip waveform pairs, the energy
distribution between ¢1(t) and ¢2(t) is not always even.
The condition for *l(t) and ﬁz(t) to be symmetric can be found by

representing ¢1(t) by

sin B(t) , 0=£¢t< ']:clz
yo(t) = (3.72)
sin[m/2 - y(t -Tc/2)], Tc/2 <t< T, -

We can now write fl(t) = ¢1(t4-Tc/2) as

sin B(t+'rc/2) " -Tc/2 S t<O0
£,(t) = (3.73)
sin[m/2 -y(t)] , 0= ¢t < Tc/2 3

The condition for symmetry is the condition fl(t) = fl(-t) for

t € [-Tc/2,Tc/2]. We state this as

sin 5(Tc/2 -t) = sin[n/2 ~y(t)] (3.74)
or | _

B(TCIZ -t) = n/2-y(t) (3;?5)
or

B' ('rclz -t) = y'(t) (3.76)

for t € [O,TC/Z], where B'(+) and y'(+) are the first derivatives of B(-)
and y(s), respectively. When using (3.76), we must remember y(0) = B(0) = 0.
If we had considered ¢2(t) in (3.72), we would have obtained a similar

result.
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As examples of our parametric representation of constant-envelope
systems, we can consider an SQPSK/SSMA communication system and an
MSK/SSMA communication system. For SQPSK y(t) = B(t), and y(t) is defined

by the fact that y(0) = 0 and by its derivative
i) = T sy + T s(e-T /2) (3.77)
Y 4 4 c 2 ;

where §(t) is the unit impulse function. For MSK y(t) = B(t), and y(t)

is defined by the fact that y(0) = 0 and by its derivative
v'(t) = ﬂ/Tc, 0=st< TC/Z . (3.78)

Notice that these derivatives must satisfy (3.76) for the required symmetry

in the chip waveform.
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CHAPTER &
NUMERICAL RESULTS
We use the method described in 3.5.2 to find chip waveforms with
good SNR and bandwidth properties. We are aided by the fact that for a

fixed value of c, the )\i fall off to zero rapidly with increasing i, once i

has exceeded (2/m)c ZTCW. In other words, for some positive integer L,
)“L =~ 0 and 0 < 11 < }‘L for i > L. We are trying to find the coefficients
Ai in the expansion of A(f), a function which is to have 99 percent of its
energy contained in [-W,W]. Since Ki is equal to the fraction of energy
which cpi(f) possesses within the frequency interval [-W,W], certainly we

can neglect the A, 's which correspond to li‘s which are nearly zero. We

i

are further convinced of this by examining (3.60) and knowing for the case

¢ =6, u~ 6.85. We may express the function

A(f) = £ Anq:ﬂ(f)
n=0

L
~ D Ancpn(f) " 4.1)
n=0
We solve the integral equation (3.47) numerically and evaluate the
coefficients B , which are defined in (3.54), for n € {1,...,L}. We use
the Bn to calculate An, and since we are only interested in An for n = L,

L
we are only interested in Bn for nS L. A plot of Z Bntpn(f) appears in

n=0
Figure 4.1, This plot was made for c¢=6, for k=1, and for L=8. We know
?\9 3 10-?. This means only about 10-'5 percent of the energy of cpg(f) is

contained in [-W,W], and we have taken L large enough to get a good

approximation to A(f).
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Figure 4.2 shows A(f). We solve the nonlinear equations (3.61) and
(3.62) (with E=,01 Tc) numerically, find the coefficients Al through AB

defined in (3.60), and plot X Aﬂpn(f)’ Notice that the wild behavior
outside [-W,W] has been squeggged by the 99 percent energy constraint.
Figure 4.1 would show much wilder behavior outside [-W,W] if we allowed L
to be greater than 8, but Figure 4.2 would still appear much the same.

Finally, we numerically take the inverse Fourier transform of A(f)
to find the displaced chip waveform f(t). We call this an optopulse with
parameter ¢ = 6. The result is shown in Figure 4.3. The function f(t)
is slightly in error at the endpoints of the interval [-Tc/2,Tc/2] as a
result of truncating the evaluation of £(t) to

o

£(t) ~ J’ A(f)e

-

Jerktie %.2)

For the case when ¢ = 6, we let ¢ = 10 W.

Figures 4.4 and 4.5 show the displaced chip waveforms f£(t) which
result when ¢ = 3.71 and ¢ = 32.28, respectively. These offset chip
waveforms result in the same expected 99 percent power bandwidth as an
MSK/SSMA communication system and an OQPSK/SSMA communication system,
respectively. Examining Table 4.1, we see that the resulting parameter
ﬁ¢ is slightly smaller for the case ¢ = 3.71 and much smaller (by a factor
of about 14) for the case ¢ = 32.28, as compared with the MSK/SSMA and
OQPSK/SSMA communication systems, respectively. We also see that for the
case ¢ = 3.71, the envelope of the total transmitted signal is nearly
constant, and for the case ¢ = 32.28, the envelope fluctuates greatly.
This table illustrates again the trade-offs which the example in section

3.4 illustrates.
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Figure 4.6 shows the fractional out-of-band power of the chip waveforms
found using prolate spheroidal functions, and Figure 4.7 shows this quantity
for some standard symmetric pulses which are of interest. We see the same
effect which we suspected from our derivation in section 3.5.1 if we
examine Figure 4.6, Figure 4.7, and Table 4.1 together. The chip waveforms
that spread their energy more evenly over the allowed frequency range tend

to have a smaller’ﬁ# parameter. This will cause an improved SNR in the SSMA

comminication system.
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CHAPTER 5

CONCLUSIONS

We have performed a general analysis of an 0Q/DS/SSMA communication
system and found the SNR. The expected 99 percent power bandwidth and
the constant-envelope characteristics of the transmitted signals were
found. There exists a complicated interplay between the SNR, the system
bandwidth, and the constant-envelope properties of the transmitted signals,
but we found methods of choosing a chip waveform for desirable character-
istics. We also determined parameters for standard chip waveforms. It
was determined that the sine pulse chip waveform was a good choice, but
that other waveform choices could cause a systém parameter to improve,
sometimes at the expense of degradation of another desirable parameter.

We should note that the SNR is an important performance index, but
that the probability of bit error that results in our system is a main
concern. Also our comparison have been made using the assumption of random
binary sequences. The power spectral demsity of the transmitted signals
is one characteristic which will depend somewhat on the actual signature
sequences which are chosen, and certainly the SNR will depend on this
choice of sequences. Random sequences are good approximations to long
signature sequences, however, and they have formed a valid base of compari-
son. Considering the fact that the parameter ﬂ¢ is often much smaller than
the parameter Vi W’ our assumption of random sequences is barely necessary
in ‘showing the dependence of the SNR on the chip waveform is through the
parameter ﬁ¢. Comparisons of different chip waveforms when fixed sequences

are chosen verify this [1].
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