
FROM CANALS TO FIBER OPTICS:

HOW SOLITON METHODS ENTERED PHYSICS
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Abstract. Solitons and the mathematical machinery for their study now play crucial roles

in many subareas of physics. These subareas are diverse, drawn from such scientific pursuits

as classical and fluid mechanics, nonlinear optics, and the theories of quantum fields, solids,

plasmas, and DNA. How did soliton methods enter physics, and what are some of the tools

needed to begin using them? After a reasonably historical introduction to the phenomenon

of the solitary wave, an overview is made of key turning points that led to the creation

of soliton theory. This overview includes a close examination of some of the papers that

particularly influenced the historical development. The inverse scattering method—a tool

par excellence in solving soliton equations or so-called completely integrable systems—is

then introduced, with emphasis placed on the simplest initial-value problem for the equa

tion describing solitary waves in a canal. Some mathematical sidelights pertaining to this

equation of Korteweg-de Vries are included for the interested reader, and these point the

way to other well-studied equations for which the soliton perspective is indispensable.

Nonlinear wave phenomena can sometimes exhibit particlelike behaviors. Under certain

technical conditions these phenomena are called solitons. A variety of nonlinear physical

systems, arising in fluid mechanics, nonlinear optics, plasmas, quantum fields, and several

other areas of physical interest, may be understood in terms of solitons—but solitons were

once subject to skepticism, and even their existence was doubted. The purpose of this essay

is to show how soliton methods succeeded in entering physics, and to introduce some of the

ideas and applications that they brought with them.

1. Historical Introduction to Solitary Waves

Before solitons were studied, there were observations of solitary waves. Later soliton

theory built on the success of equations that modeled these waves, and so it may be helpful

to pursue solitary waves before considering solitons in general. Interest in modeling solitary

waves may be heightened by considering them in historical context, as many physicists—

some well known—examined this problem.

Solitary waves were first given scientific attention by John Scott Russell, who studied

waves in order to design better ships. In August of 1834, Russell was sitting on his horse

beside the Union Canal of Edinburgh, Scotland, when he made an observation that changed

his life.
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I was observing the motion of a boat which was rapidly drawn along a narrow

channel by a pair of horses, when the boat suddenly stopped—not so the

mass of water in the channel which it had put in motion; it accumulated

round the prow of the vessel in a state of violent agitation, then suddenly

leaving it behind, rolled forward with great velocity, assuming the form of a

large solitary elevation, a rounded, smooth and well-defined heap of water,

which continued its course along the channel apparently without change of

form or diminution of speed. I followed it on horseback, and overtook it still

rolling on at a rate of some eight or nine miles an hour, preserving its original

figure some thirty feet long and a foot to a foot and a half in height. Its

height gradually diminished, and after a chase of one or two miles I lost it in

the windings of the channel.

Here is a picture of a solitary wave in a canal:

Figure 1. Solitary wave in an Edinburgh canal.

The water waves usually encountered in a pool or at the beach do not move "without

change of form or diminution of speed." In fact, such waves either:

• get wider and shallower (as in a swimming pool), quickly disappearing; or

• "break" (as at the beach), the wave peak racing ahead, outrunning its support, and

crashing down.

The wave Russell saw, however, did neither of these things—after a push, it kept its shape

and speed for miles. If a ship were to behave like the "great solitary wave" Russell described,

it would be undeniably energy-efficient—a better ship.

Russell investigated further by building a 30 foot long wave tank in his backyard garden,

eventually using a piston to produce solitary waves and study them experimentally. He



discovered a mathematical relationship between the depth of the water at rest (/i), the

maximum height of the wave (r/o) ? and the wave's propagation speed (c). Let cq = be

the speed of long-wavelength linear waves in water of depth /i, where g is the strength of the

gravitational field; see below for details. Then, according to [14], Russell found that

c = ct)(l + 6r/o),

for some positive parameter b depending on h. Thus, these nonlinear waves always had

a higher speed than the corresponding linear waves. Considering his observations of the

solitary wave phenomenon to be of scientific value, he presented his "Report on Waves" [22],

the source of the above quotes, to the British Association for the Advancement of Science.

This paper was severely criticized by two of the leading scientists of the day, the well-

known astronomer Sir G.B. Airy and the influential mathematical physicist G.G. Stokes.

Aside from the mathematical relationship described above, Russell had made little in the

way of a mathematical analysis regarding solitary waves, and in particular made no use

of differential equations. In his 1844 paper "Tides and Waves," [1] Airy derives a formula

for the speed of shallow water waves that appears to disagree with Russell's formula. He

then argues that a propagating wave like Russell's must get steeper in front, and less steep

behind—in other words, that solitary waves cannot keep their shape. He writes, of Russell's

"great solitary waves," "We are not disposed to recognize as deserving the epithets 'great' or

'primary'." In 1847, Stokes worked on a related problem, writing "On the theory of oscillatory

waves" [24]. Here Stokes analyzes waves in nonviscous fluids with a periodic profile, such as

superpositions of sine waves like

r){x^ i) = sin {k{x — ct)),

which are required by linear water wave equations to travel at speed

c = Y^tanh(/[:/i).
Note that in the long-wavelength limit, A 1, where A: = ̂  <C 1, we have tanh {kh) « kh.
Thus, the long-wavelength propagation speed is c !=a \/^> explaining cq's definition as

Stokes presents a formula for the profile of a periodic wave with infinitely many humps,

which he claims, "is the only form of wave which possesses the property of being propagated

with a constant velocity and without change of form—so that a solitary wave cannot be

propagated in this manner." Airy and Stokes appear to have proved that solitary waves do

not exist! This apparently put an end to Russell's scientific research.

Nevertheless, among ship designers, Russell is remembered for determining the natural

traveling speed for a given fluid depth, a result which grew directly out of his research on

solitary waves. He is also remembered for his work on what was then the largest moving



manmade object, The Great Eastern. In 1865, the Great Eastern was used to lay 4,200

kilometers of the transatlantic telegraph cable between Ireland and Newfoundland, the first

electronic communication system between Europe and America [14]. Russell's obituary in

the June 10, 1882 edition of The Times, calling Russell's system of design the "wave system,"

says:

He succeeded in having his system employed in the construction of the new

fleet of the West India Royal Mail Company, and four of the largest and fastest

vessels—viz, was the Teviot, the Tay, the Clyde, and the Tweed—were built

and designed by himself... The most important work he ever constructed was

the Great Eastern steamship, which he contracted to build for a company of

which the late Mr. Brunei was the engineer. The Great Eastern, whatever may

have been her commercial failings, was undoubtedly a triumph of technical

skill. She was built on the wave-line system of shape... It is not necessary

now to refer to this ship in any detail. In spite of the recent advances made

in the size of vessels, the Great Eastern, which was built more than a quarter

century ago, remains much the largest ship in existence, as also one of the

strongest and lightest built in proportion to tonnage.

The conclusions Russell drew from his observations of solitary waves apparently developed

into solutions of challenging engineering problems. The scientific problem of solitary waves,

however, remained.

2. From Solitary Waves to the Korteweg-de Vries Equation

Within Russell's own lifetime the Ftench scientist de Boussinesq proposed a new theory

of shallow water waves, different from Airy's, in which Russell's observations were no longer

inconsistent. According to [13], Boussinesq's most accessible paper on shallow water waves

is [2], whose title is too lengthy to give here. In this paper, he considers long-wavelength

fluid motion in a shallow canal with rectangular cross section. The fluid is assumed incom

pressible, irrotational, and inviscid, with friction being ignored. Since the approaches of

other physicists—such as Lord Rayleigh and Korteweg-de Vries—were similar to Boussinesq

in their use of power series, it is worth explaining his approach here.

For Boussinesq, dynamics are of primary interest, and so at time t the coordinates of a

"fluid particle" are denoted {x,y) = {x{t),y{t)). Thus, the velocity at time t is given by

{u,v) = {x'(t),y'{t)). As is usual for problems of two-dimensional potential flows in fluid

mechanics, Boussinesq deflnes a velocity potential 0(a;,y) satisfying u = |^ and v = |^, as
well as a stream function ifj{x,y) satisfying u = ̂  and v = — |^. For (f) to be well-defined,
its mixed partials must be equal, that is, the partial derivatives of u and v must be related

in a certain way, ̂  = 0- This condition is equivalent to the hypothesis that the fluid



be irrotational. Similarly, the stream function tj) is well-defined exactly when the fluid is

assumed incompressible. The stream function gets its name from the fact that equations of

the form 'ip = c, with c constant, define streamlines for the flow. By definition, ^ ̂
and ̂  = ̂  = ~^)SO0 and t{) satisfy the Cauchy-Riemann equations of complex analysis.
This implies that <{> and are the real and imaginary parts of a complex-valued analytic

function / of a complex variable z = x + iy. In other words, f{x -I- iy) = 0(rc, y) -I- i^(rc, y).

A typical anal5dic function has singularities. For example, f{z) = has a singularity

at 2 = 1. This prevents its power series about 2 = 0, f{z) = 1 + 2-1-2^-1-2^-1-..., from
converging outside of the open unit disk.

Particularly nice analjdiic functions, such as e^, do not have this problem, and have an

everywhere-convergent power series about each point. Thus, if we understood e® for x real

and wanted a better idea of the behavior of /(2) = for 2 complex, we could use its Taylor

expansion about x:

/ °o „,2fc oo ,,2fc+l \

n=0 \k=0 fc=0 ^ ' /

This would then tell us that = e® (cos(y) + isin(y)).

Boussinesq apparently felt that in the long-wavelength limit, his unkown analytic function

7(2) would be nice enough with respect to ̂ -convergence to justify a similar procedure:

00 /. \ „ 00 2fc 2fc+l

Later, Korteweg and de Vries explained the y-convergence on page 426 of [15] with these

words: "For long waves these series are rapidly convergent. Indeed, for such waves the

state of motion changes slowly with x, and therefore the successive differential-quotients

with respect to this variable of all functions referring, as / does, to the state of motion,

must rapidly decrease." Boussinesq, who rarely addresses complex-valued functions directly,

appears to assume implicitly that f(x) is real-valued for real x] this is false for such analytic

functions as f{z) = iz. However, if we grant him this, then we can follow him by equating

the two terms above with the real and imaginary parts of /, namely <f) and -0^

00 2k

and
y2k+\

Having come this far, there is nothing to stop Boussinesq from calculating w = |^ and v = ̂
to arrive at similar series expansions for u and v.



Boussinesq then required boundary conditions to hold on the surface profile y = r]{x, t), a

kinematic condition
drj dri

(this comes from taking = ̂(2/ ~ ̂) + (^5 ̂ ) • V(y — 77) = 0) and a dynamic condition,

d(f) P 1_,_, .
•^ + - + 2 w ■ V(/| + 37; = F(t),

which may be recognized as a form of Bernoulli's equation. Here, P is a supposed constant

value that the pressure p assumes at the surface, and p is a supposed constant fluid density.

F{t) is an unkown function, not to be confused with f{z). These equations—and the notation

we've adopted—may be found on page 207 of the fluid mechanics textbook [4], except that

the kinematic condition found there accounts for a z-component in the velocity.

The dynamic boundary condition can be written in a more appropriate form by moving

^ to the right-hand side and writing out and ̂  in terms of known series. The latter
may appear worrisome because is a function of (a:, 7/), but recall that {x,y) = {x{t),y{t))

and {u,v) = {x'{t),y'(t)), so

^0 _d<pdx d<f)dy _ 2 2
dt dx dt dy dt ^ ^

and Using the series for u and v gives an equation relating 77 and

/(re); Boussinesq removed P/p and the time-dependence of F{t) by requiring everything in

sight (except a gh term embedded in F{t) to properly account for gravity) to go to 0 as

X  ±00. This gives two equations (from the two boundary conditions) in 77 and /. Despite

the presence of derivatives on / in the series expansions, Boussinesq proceeds to truncate

the series and eliminate / to obtain an equation valid for 77 up to a certain order; however,

the writing is not as transparent as might be wished. The reader interested in seeing the

tedious details of this purely mechanical approximation process is referred to [2], and may

profitably read [21]. The point is that, to a first approximation, Boussinesq obtains the wave

equation
d'^7] _ d^T]
dip ~ ̂ d^'

To second order, he arrives at what we now refer to as the Boussinesq equation,

dPr) ^5277 d\
dfi dx^

where we^ C = This appears, for the most part, to satisfy him.

The theory of de Boussinesq was confirmed by 1876 in [21] due to some investigations by

Lord Rayleigh, a former student of Stokes. By supposing the existence of a solitary wave

^Boussinesq does not introduce this C abbreviation. I've introduced it to make his work easier to follow.
6



and adding a flow to negate its velocity—thus making the wave profile time-independent—

Lord Rayleigh was able to derive an explicit formula for the wave form rj independently of

Boussinesq. To wit, making use of standard techniques (velocity potential, stream function,

series, pressure equation) and approximations (especially for square roots), he was eventually

able to obtain an equation for the wave profile 7}{x). In modern notation, his equation was

drj

dx̂

_3
/l3 1 + T^'n^i'n - m) = o.

Here tjq is the maximum height of the wave above the equilibrium fluid depth h. Rayleigh's

solution to this equation, satisfying 7y(0) = 7]q, was

r}{x) = r/osech^

Figure 2. Lord Rayleigh's function t](x) with 7]o = h = 3; the appearance is
similar to a gaussian bump. In realistic situations we actually expect tjq h.

This famous sech^(0) profile of Rayleigh reccurs frequently in the literature, e.g., as the
sech^(^) potential in quantum mechanics, and has surprising predictive power in the study
of canal waves. For example, suppose we want to compare the order of magnitude of the

ratio S = ̂ with s = ̂, where w is the half-height width of the wave profile. If Wq is the



half-height width of sech^(a;), the coefficient of x in Rayleigh's function gives w =

Ignoring the constants, this yields ̂  5^ V^' s, a result that appears to hold true
for nonlinear canal waves in general. I encourage the interested reader to derive Rayleigh's

solution from its differential equation and initial condition as an exercise. The reader may

take heart in the knowledge that, as Lord Rayleigh assumed the presidential chair of the

British Association for the Advancement of Science, Lord Kelvin confessed, "Some of the

pages of Lord Rayleigh's work have taxed me most severely, but the strain was well repaid."

At this point, a few intuitive comments about the wave equation in one spatial dimension

may be in order. We recall that the equation for waves traveling at speed c in one spatial

dimension is
d'^u _
dt^ ^ dx"^'

and that its general solution is u(x, t) = f(x — ct) + g(x + ct). That is, the general solution

is the sum of a profile propagating to the right at speed c and another profile traveling to

the left at speed c. Suppose, however, that we were only interested in waves propagating to

the right. In other words, we are only interested in functions of the form u{x,t) = f{x — ct).

In that case, a much simpler (meaning: lower order) equation is sufficient to characterize

the wave translation. Calculating the partial derivatives with respect to t and x, we see in

this case that ̂  = {—c)f{x — ct) and = f'(x — ct). Comparing the two, we find that

^ + c|^ = 0, or equivalently,
du d(cu) ^
1——- = 0.

dt dx

Moreover, since ̂  — = + (§i — this equation—in differential operator
form—may be said to be "inside" the wave equation, in the sense that it is a multiplicative

factor of its differential operator. Prom this point of view, it is perhaps much easier to

understand the suspicion of Airy and Stokes toward the solitary wave. Clearly if, to a good

approximation, the solitary wave has a profile of the form r)(x — ct), then 77 does satisfy

~  ̂ ~ wave differential operator is related to r/'s (presumed) governing
equation as a multiplicative factor, then it seems inconceivable that this wave differential

operator should be anything other than the one Boussinesq found to be correct to first order,

5^77 _
W ~ ̂

In that case, c = \/^, and we have the usual long-wavelength linear waves. For the speed

of Russell's waves to exceed \/5/i—yet still have a simple governing equation—something

rather subtle must be going on.

Everything might work out correctly if, somehow, the speed c were to be hidden inside

the machinery of the equation, or did not appear explicitly. Toward this end, we can replace



c with a wave velocity function^ w = w{x^ t) determined by the Boussinesq equation. The
idea is that w just happens to be constant for solitary waves, but for general nonlinear waves

it can depend on x and t. Having replaced c with w{x^t), we still expect the equation

du diwu)
1- — = 0

dt dx

to hold for nonlinear waves u propagating to the right; in [2], Boussinesq uses conservation

of mass to help justify this. Now, if w can be eliminated by writing it in terms of 77, then we

will have derived the governing equation for nonlinear long-wavelength water wave profiles

?7 propagating to the right. We will have obtained the famous Korteweg-de Vries equation.

Unfortunately, it is unclear where we are going to get our hands on an expression for the

wave velocity w[x,t). If Russell's relation c = cq (1 + br}o) is our guide, we expect zu to

take the form zu = y/^{l + (...)), but "(...)" is a bit of a mystery. We expect it will

have something to do with the expression C = ̂  appears in the Boussinesq
equation. The only way I can see to move forward is to attempt to work out the velocity for

a particular example—such as Lord Rayleigh's function

ri{x) = %sech^ ( y

If T]{x — ct) is a solution, what is ^ -I- calculating |^, we can use tanh^(0) =
1 — sech^(^) with 9 = — ct) to eliminate tanh^ in favor of sech^ terms, arriving at

^ ̂ = -2770 (3sech^(0) - 2sech^{0)) .
dx^

Therefore,

whence

d'^T]

3 dx"^
= 7?o (2sech^(0) - 3sech^(6>)) ,

^  2h Zdx'' h
In other words, we may conclude^ that, for solitary waves,

^  h^'
Substituting ̂ 77 for in the Boussinesq equation yields

d'^T) d'^rj 5^77

^Boussinesq denotes the wave velocity by w. This is an unfortunate choice for velocity as oj is frequently
used to denote angular frequency. To avoid confusion, we have denoted it by w instead.

^This result, like the existence of solitary waves themselves, initially surprised me. To clarify, let us define
the nonlinear opeator Z by Zt] = C = ̂  terms of Z, our result is that Zr} = so we have
the solution to a nonlinear eigenvalue problem.



Now the speed c is in our grasp. The solitary wave rj traveling at speed c satisfies both

and ̂  = g{h + As 77's partial derivatives are uniquely determined, we
must have = g{h-\-7]o). In fact, according to [6), this was a result known to Russell from

his solitary wave experiments. Factoring h from the term in parentheses and applying the

binomial approximation, we arrive at

c = y/gh{l-\-r]o/h) « .V^ (l +
when r]o/h 1. Since a relatively low height is observed for solitary waves in practice,

the condition rjo/h 1 is satisfied, and we obtain excellent agreement between the implicit

Korteweg-de Vries equation and Russell's experiments with solitary waves. (In particular, if

Co = 1 = /i for appropriate units, then the solitary wave exceeds the linear wave speed by

half its height per unit time, an easily-remembered result.)

Since ̂  ^ for solitary waves, we would guess that, in analogy to c = (H" l^^ie
wave velocity xu is given by

I have provided motivation for this important equation because, once knowing it, we can

derive the Korteweg-de Vries equation from

dy d(wn)
dt dx

However, Boussinesq provides no apparent motivation for it. Instead, he defines an auxiliary

function tj) and offers a sort of mathematical proof that it is 0. To see how this might be

useful, note that to verify our guess for zu, it suffices to show that w — or

equivalently, 7]{w — yf^) — = 0- Boussinesq in [2] defines

lP = T]{w- V^) - -^C-
If Boussinesq can show that tp = 0, then he will have verified our guess for zj. He does this

by comparing with The calculation of the former is

dip ̂  djwr}) _ r-r^ _
dx dx ^ dx 2 dx^

and, after using § -j- = 0, we arrive at

dip ̂  _ r-r^ _
dx dt dx 2 dx

10



To find however, we require an expression for One may be arrived at by using

^ _j_ = 0 to substitute for § in the Boussinesq equation. We get

^ f d{w'n)\ _ ^ ̂
at V dx ) ̂ dx'^ ̂  dx^

or, equivalently,
_a^ f d{wri)\ _ . ̂  ̂
aa; V 9t ) ® ax2 ̂  ax2'

which may be integrated with respect to x. With the constant ignored due to vanishing at

infinity, we obtain
5(^__
dt dx ^ dx'

Finally, we may calculate recall that ijj — wq — y/^q — We get

dtp ̂  djzuq) _ r-r^ _
dt dt ^ dt 2 dt

Now Boussinesq says that we may use ̂  to first order since q—and hence C—is
propagating to the right; recall that we want w for such q. Apparently this approximation

will not disturb the desired order of approximation elsewhere. Together with our equation

for we get

dt ^ dx ^ dx dt 2 dx'
which may be simplified to

S fi -L/C/ L/ Ju £d KJ \J {/ L/w

This says that ̂  is a function of the form tp = ip{x y/^t), so that ip propagates to the

left! Since, however, ip is written in terms of various rightward-traveling functions, this is

manifestly impossible unless ip = 0. According to [13], one of Boussinesq's contemporaries,

de Saint Venant, found this proof so unilluminating that he considered it a high priority

to provide a more physical demonstration. However, I consider this one proof to provide

sufficient illustration of French elegance for our purposes.

In 1885, de Saint Venant was able to offer mathematical explanations for Stokes and Airy's

mistakes. It seems that these mistakes erroneously suggested that a wave profile cannot

be maintained unless nonlinear effects are negligible, in which case dispersion would be an

issue—in solitary waves, dispersion and nonlinearity somehow balance. More subtle mistakes

involved confusion regarding the differences between linear and nonlinear phenomena. For

example, the solitary waves Russell observed always manifested as a bump (q > 0), and

never as a depression {—q); these are "gravity waves," so it perhaps makes sense that up and

down must be treated differently. On the other hand, if a given function q solves a linear

equation, any multiple of it—including —q —solves it too. Thus, for example, if Stokes
11



is somehow convinced he has shown there can be no solitary-wave-like depression, then

(assuming he treats the phenomenon with linear methods) he will be erroneously convinced

of the impossibility of the existence of solitary wave bumps.

Due to the ad hoc nature of Rayleigh's approximations, doubts still remained about the

solitary wave's ability to persist without dispersing beyond short-time regimes. Finally, in

1895, the Dutch mathematician Korteweg and his student de Vries derived an explicit non

linear differential equation modeling rightward-traveling water waves on a canal (contained

in Boussinesq's paper [2] only implicitly). Their equation, now called the "KdV" equation

after their initials (thus explaining the name of the "KdV Institute" in Amsterdam), is ob

tained from the Euler equation for a nonviscous, incompressible fluid with irrotational flow; a

derivation may be found^ in Appendix A of [5]. Taking this equation into a weakly nonlinear
regime, "they made some simplifying assumptions including a sufficiently narrow body of

water so that the wave can be described with only one spatial variable and constant, shallow

depth as one would find in a canal," according to [14]. Importantly, the stability of their

equation—in the absence of friction—provided a clear, unified framework that removed the

lingering suspicions regarding the existence of solitary waves. They point up these suspicions

in closing the first paragraph of their famous paper [15]:

In such excellent treatises on hydrodynamics as those of Lamb and Basset,

we find that even when friction is neglected long waves in a rectangular canal

must necessarily change their form as they advance, becoming steeper in front

and less steep behind. Yet since the investigations of de Boussinesq, Lord

Rayleigh, and St. Venant on the solitary wave, there has been some cause to

doubt the truth of this assertion. Indeed, if the reasons adduced were really

decisive, it is difficult to see why the solitary wave should make an exception;

but even Lord Rayleigh and McCowan, who have successfully and thoroughly

treated the theory of this wave, do not directly contradict the statement in

question. They are, as it seems to us, inclined to the opinion that the solitary

wave is only stationary to a certain approximation.

The equation of Korteweg and de Vries for the height 7/(a:, t) of a nonlinear surface wave®
above its equilibrium level, where h is the fluid depth, is given by

I drj dr} 3 dr) d^r} _
Co dt dx'^ 2hP dx 6 dx^ '

^In terms of the 5 and e introduced in the discussion of Rayleigh's function r]{x), the chief assumption of
this thorough derivation is that <5^ « e. This might appear to be overly restrictive, but in practice it is not
because is left free to settle to the appropriate height.
^Here we neglect surface tension. Actually, in their original derivation, Korteweg and de Vries account
for surface tension, but their coefficients are more complicated. They also do not assume that all relevant
functions vanish at ±oo, so their derivation is more general than Boussinesq's investigation in that sense.

12



where co = is the propagation speed of the linear waves in the long-wavelength limit.

The reader is welcome to plug our above expression for w into ̂  -I- = 0 and divide
by Co to obtain precisely this equation, though Boussinesq did not® do this. The reader may
also wish to verify directly that ii 7] > 0 and —t] are both solutions of this equation then

7] must be constant. Indeed, after multiplying the equation for r; by — 1 and subtracting

this from the equation for —7], we will have 7]^ = 0, whence = 0; plugging this into
the Korteweg-de Vries equation then yields ̂  = 0 as well, so that ?? is a time-independent
constant. This is a good illustration of how intuitions regarding linear equations need not

extend to the nonlinear.

Following [5] and Korteweg-de Vries, we can attempt to isolate the nonlinear effects by

changing to a frame moving at speed Cq. Introducing the new variable X = x — cqI eliminates

the second term, leaving
1 07} 3 Ot] 0^7} _

6"^ ~ ■
Having this equation in hand, we can ask whether it confirms Rayleigh's calculation of the

solitary wave profile. Assume that we have a solution 7j of this equation propagating at

constant speed, so we may write 7](X,t) = 7}{X — ct). Plugging this into the equation, we

get

^(-oh' + 4w + y'?"' = 0.
Rearranging, we have

9- 6c^/// I ^ n

^  h^co^ ~
Now 7)7]' = {7}'Y/2, so integrating once yields, for some constant A,

// 9 2 6c

If we multiply by 77' and observe that 7}"rf = ((77')^/2)', we can integrate again to obtain

{7}'f 8 3 6c 2 >1 o

If we require 7], 7]', 7}" 0 as ̂  = X — ct ±00, then the equation for 77" makes A = 0, and

the equation for 77' makes 5 = 0. (If we do not take A and B to be zero, then we must rely

on Jacobi elliptic functions to find the solution. This is more sophistication than is needed

for finding the solitary wave profile.) We arrive at the equation

.  , 2 2 6c 3 \ 6c 2 Co \

®Boussinesq did not do this in [2]. However, in one of his later papers the Korteweg-de Vries equation does
appear in a footnote, apparently the result of differentiating the equation = 0 with respect to x.
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We take the square root of both sides:

This renders the equation separable:

To evaluate the integral on the left we let rj = ̂sech"^ (0), recalling that 1 — sech^ {9) =
tanh^ {$) in order to eliminate the square root.

2sech {9) (—sech (9) tanh (0)) d9r  dTj _ r^2sech(6

J VJI - ~ J~  J ^sech^ {9) tanh (9)
Since (sech^)' = 2sech(—sech • tanh), all functions of 9 cancel. Thus, 7]{^) = ̂sech^ (9),
where (taking 0 for the constant of integration and ignoring signs since sech^ (9) is an even
function of 9) the equation

determines 9. That is.
2ch , 2 6c

Vii) = —sech , —^

To compare this profile with Lord Rayleigh's, let t/o = — • Then c = Co?r. In terms of

2 / 1 1 u2 I ^VOniO = %sech = %sech I y 1 .

in perfect agreement with Lord Rayleigh's function.

Introducing appropriate dimensionless variables reduces the Korteweg-de Vries equation

to its "standard form." Unfortunately, the choice of "standard form" is not uniform across

disciplines, authors, or even chapters within the same book. Fortunately, they differ only by

linear changes of dependent and independent variables. For example, while Kasman, in [14],

chooses an equation of the form

du _ 3 du 1 d^u
dt 2^dx 4 dx^

as standard form, Dauxois and Peyrard, in [5] p. 165, take

du ^ du d^u
'at ~ di 9^3 = 0

as theirs. To reduce the equation in t and X to the latter (note the minus sign!), let u = —T]/h,

^ = X/% and r = t/^ (I found these substitutions by working backward), renaming
^ and T as X and t after sufficient use of the old x and t through the chain rule; finding
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the appropriate substitutions for the former (Kasman) equation are left to the interested

reader. (Note that these new variables are really dimensionless: the units for

are = s, so r has units of seconds/second, i.e., is dimensionless.)

Perhaps surprisingly, Korteweg and de Vries in [15] were able to use cutting-edge tech

niques from pure mathematics to find further solutions to their nonlinear partial differential

equation. These solutions were in terms of Jacobian elliptic functions such as sn(x) and

cn(a:), which describe what are now called, in honor of cn(a;), the "cnoidal waves." The

ability to find such solutions may have been dismissed as a coincidence (the supposed coinci

dence being between equations pertaining to KdV solutions and certain equations from the

theory of elliptic functions). Either way, little further work appears to have been done on

solitary waves or the Korteweg-de Vries equation until the 1960's, when a paper by Fermi,

Pasta, and Ulam written at Los Alamos, [9], became declassified.

3. Turning Points in the Development of Soliton Theory

Just as Airy and Stokes mistakenly assumed that a nonlinear wave equation would destroy

any initial wave profile, so the Los Alamos investigators believed that any nice, ordered

initial data set would quickly be distorted beyond recognition under evolution by a nonlinear

equation—but decided to test their intuition with a computer. Ulam, in [25] later, said:

Fermi expressed often a belief that future fundamental theories in physics

may involve non-linear operators and equations, and that it would be use

ful to attempt practice in the mathematics needed for the understanding of

non-linear systems... The results of the calculations (performed on the old

MANIAC machine) were interesting and quite surprising to Fermi. He ex

pressed to me the opinion that they really constituted a little discovery in

providing intimations that the prevalent beliefs in the universality of "mixing

and thermalization" in non-linear systems may not always be justified.

Fermi, Pasta, and Ulam wanted to study how a crystal-like structure evolves toward

thermal equilibrium with a computer. They did this in [9] by simulating a chain of A = 64

particles of unit mass linked by a qadratic interaction potential and a weakly nonlinear

cubic interaction. The system they considered may be described by the one-dimensional

Hamiltonian^

N-\ . N-\ - j, N-\

^ = E 2^' + E - "j)' + -T - %)'•
j=Q j=0 j=0

^The Fermi-Pasta-Ulam paper only gives the equations of motion, but I'm giving the Hamiltonian because
I find it a bit more transparent. Thus, the paper speaks of a quadratic force where I would speak of a cubic
term in the Hamiltonian. The coefficients K and are written to match those in [16].
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Here uj is the displacement along the chain of particle or atom j with respect to its equilib

rium position, and pj is its momentum. The small coefficient a 1 measures the strength

of the cubic contribution to the interaction potential (which gives rise to a quadratic force

term). The two ends of the chain were kept fixed by analogy with a vibrating string, so

= 0 = UN- In their paper [9], they explain, "The purpose of our computations was to
see how, due to nonlinear forces perturbing the periodic linear solution, the string would as

sume more and more complicated shapes, and, for t tending to infinity, would get into states

where all the Fourier modes acquire increasing importance." For the discrete system under

consideration, a typical approach would be to think in terms of "normal modes," which play

the same role as the Fourier modes in the continuum limit. After appropriate normalization®

these are related to the displacements through Ak = % sm(jkTr/N) and have the

frequency values ul = 4K sin^(A;7r/2A'). Thinking of these modes as a basis, we can rewrite
the Hamiltonian H in terms of them as

^ ~ 2 ^ ̂  Ck,e,m^k^e-^Tn-
k  k,£,m

The Ck,e,rn witness a coupling between modes; if a = 0, then the equations of motion become

linear—and decoupled. The problem in that case is treated in books on statistical mechanics

such as [23].

Due to the coupling between modes, Fermi, Pasta, and Ulam thought that energy intro

duced in a single mode (fc = 1 in their simulation) would drift into the other modes, until

the energy would be shared between all modes. This would be an example of equipartition

of energy, essentially a hypothesis that lies at the foundation of statistical physics. In the

beginning their calculations suggested this would be true. As their paper states, "Starting in

one problem with a quadratic force and a pure sine wave as the initial position of the string,

we indeed observe initially a gradual increase of energy in the higher modes as predicted."

One day, according to Metropolis® in [19], they accidentally left the program^® running long
after the steady state had apparently been reached. When they realized they had forgotten

to kill the program and returned to the computer room, they noticed the equipartition of

energy had ceased. "For example, mode 2 decides, as it were, to increase rather rapidly at the

cost of all other modes and becomes predominant. At one time, it has more energy than all

the others put together!" To their great surprise, after 157 of mode I's periods, almost all of

the energy was back in the lowest mode, as if the system had reset itself. "Finally, at a later

®In [9] they are given directly by sin ̂  without normalization. For the normal modes we follow
the notation and discussion of [5].
®By the way, a common nickname for the mechanically-analyzing, numerically-integrating computer at Los
Alamos (MANIAC) was "Metropolis And von Neumann Invent Awful Computer."
^®The computer programming was done by Mary Tsingou; although acknowledged in the paper, she was not
considered an author because she was not involved in its writing (though neither was Fermi—being by that
time deceased).
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time mode 1 comes back to within one percent of its initial value so that the system seems

to be almost periodic." Contrary to the authors' expectations, the drift of mode I's energy

to a steady, energy-sharing state does not occur. "In other words, the systems certainly do

not show mixing."

The results of these numerical experiments challenged readers in the sixties to conduct

their own numerical investigations to resolve this "FPU paradox," that nonlinearity does not

guarantee equipartition of energy. To understand it, researchers were forced by necessity to

stop thinking in terms of the normal modes from the linear theory. They had to consider the

full nonlinearity intrinsically, not in Fourier space, but in real space. According to [5], Kruskal

at Princeton University (among those in the boat depicted in Figure 1) and Zabusky at Bell

Labs found an explanation by taking a suitable limit of the discrete system of connected

vibrating masses that Fermi, Pasta, Ulam, and Tsingou had used in the original experiment.

To see what they were doing, begin with the equations of motion derived from the Fermi-

Pasta-Ulam Hamiltonian H = J2f=o^ 2'Pj + ^ ~
namely

iij = K(uj+i Uj-i — 2uj) H- Ka[{uj+i — UjY — {uj —

It is helpful to highlight solutions having a small amplitude with respect to the lattice spacing

of the particles at rest, which we denote by o. This is done by substituting u = eav with

e  1. Dividing through by ea and perhaps thinking of c = ay/K as the speed of sound, we
obtain

c e(?a
= 72 fe+i + ~ + —[fe+i -

Cv CL

Recall that Fermi, Pasta, and Ulam began by exciting the normal mode with the low

est wave number, k = 1. It turns out that the system began to experience recurrence

or near-periodicity before any of the large-wavenumber modes became excited. Because

of this, Zabusky and Kruskal would have been justified in restricting their attention to

low-wavenumber modes, which amounts to investigating long-wavelength behavior in the

continuum limit. To more readily estimate orders of magnitude, the dimensionless variables

X = ex/a and 9 = ctja are introduced. The presence of e in the definition of X expresses the

long-wavelength idea that v varies slowly with respect to spatial displacement. Substituting

± u) = v{X ± e) in Taylor-expansion form into the (X, 0)-equation for we get

d^v f 2 \^  r. ^2

where

and

_/ X21
(9^2 dX^ l2dXy a L • • ;-J >

.  . ( dv e^ d'^v
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Only keeping terms up to order (and noticing the e preceding the term in brackets) yields

d'^v _ 2 d'^v d^v ^4 dv d'^v
W ~ ̂ aP °^dxd5o'

If we kept terms just up to order e^, we would have the wave equation for profiles moving

at speed e. By changing to the moving-frame space variable ̂  = X — e9 can isolate any

remaining behavior. Due to the term and nonlinear term, the solution will still

evolve in the frame translating at speed e, but because the coefficient is so small it will

change slowly. We will be able to see the physics more clearly if we "speed up time," or

equivalently, pick a new timescale appropriate for slow-time change. To bring the physics

to the surface, then, we let 6 = e~^r; when r increases, 6 increases a lot, so time is sped
up. Equivalently, we let r = e^9\ thus, r is the parameter for evolving slow-time change.

The choice of exponent for e is forced on us by the need to pick out a scale where the terms

containing spatial derivatives and those containing time derivatives interact at the same

order in e.

Changing from x and 9 to ̂  = x — e9 and r = we have

d _ d dr d _ d
dx dx dx dr

and
d _ d ^ 3^
ae ~ ae'^ae'^ ~

We have on the left side of the equation, so we calculate

-^ =
d9^ ae d^dr

Up to order e^, our equation is now

od'^v 4 3% e'^ 4 dv&^v
^ ̂  ~ ̂  a^ ~^ ̂ ""aiW

Deleting the common term from both sides and transposing the term with mixed

partials, we conclude that

^ 4 d'^v d^v 4 dv d'^v
^  12 ^ ~

Everything is to the same order in e, and all derivatives include so we can clean up by

defining w = ̂  and dividing by the coefficient of the time-derivative term:

dw 1 di^w dw

Remarkably, we've arrived at a form of the Korteweg-de Vries equation, the key to Zabusky

and Kruskal's explanation of the FPU paradox. In fact, their 4-page paper [16] is focused
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exclusively on observations of numerical solutions to the Korteweg-de Vries equation. A

"phenomenological description" of recurrence in the Fermi-Pasta-Ulam problem is considered

an application of their paper, and is only touched upon in the first paragraph. I have included

this derivation because I was curious to see how the connection to the Korteweg-de Vries

equation could be made explicit.

In their numerical^ ̂ experiments [16], Zabusky and Kruskal made a couple of striking
observations:

• Positive initial profiles supported on intervals of finite extent tended to evolve under

the KdV equation into a finite number of humps, each behaving like one of Russell's

solitary waves; and

Figure 3. The "collision" of two solitary waves, that is, a 2-soliton.

• if two such humps approach each other, they "interact," e.g., the sum of the heights

of the wave profiles during an interaction often decreases and they may decelerate

briefly as the continuum or lattice is compressed. After "collision," two humps emerge

which are hardly distinguishable in shape or speed, if at all, from the originals.

The first observation suggests that solitary waves in real space may play the role of normal

modes for solutions of the KdV equation, similar to how the motion of a simplified vibrating

string may be described with fundamental sine wave modes in Fourier analysis. The second

observation, where waves are colliding and coming apart like fundamental particles (or even

billiard balls), calls into question whether these should be called "solitary waves" at all: they

aren't always solitary, and don't always behave like waves. Looking for a name reminiscent

of fundamental particles like the term "electron," Kruskal and Zabusky settled on "solitons,"

with the prefix "solit-" deriving from "solitary." More precisely, a solution (even if it depends

detail, they considered the initial value problem for ut + uux + S^Uxxx = Oj with periodic boundary
conditions—a numerically stable problem which we have not considered here. They solved the equation with
u{x, 0) = cosfTTx), 0 < X < 2, for u, Ux, and Ua periodic on [0,2] for all t\ and they chose S = 0.022.
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on more than one spatial variable or solves a different "soliton equation" than the KdV

equation) which typically has n humps (outside of interactions) is called an n-soliton.

(A ) t = 0

(B ) t = tB
(C ) t = 3.6tB

©

0.50 1.0 1.5

NORMALIZED DISTANCE

Figure 4. A picture of a plot from the Zabusky-Kruskal paper [16]. It depicts
the evolution of the Fermi-Pasta-Ulam initial condition in real space, at three
different times. The dotted initial graph is of a sine wave, corresponding
to wavenumber k = 1. The dashed later graph depicts a sharp fall around
distance 0.50 that looks like it could turn into a discontinuity. The solid final
graph demonstrates the linear relation between the amplitude of a soliton and
the excess of its speed over the sound velocity.

What happens when a fundamental sine wave provides the initial condition^^ for the

Korteweg-de Vries equation—do we see what happens when the first normal mode is excited

in the Fermi-Pasta-Ulam paper? At first, the nonlinear term in the Korteweg-de Vries

equation tends to make sharp fronts in the data, as if a discontinuity is about to form.

This steepening requires higher and higher Fourier modes to describe it, similarly to how

Fermi, Pasta, and Ulam observed higher normal frequencies being employed when their

system appeared to be mixing. Then this steepness is jerked into a series of pulses—the

third derivative in the Korteweg-de Vries equation prevents a shock from being realized.

^^Periodicity was also enforced in their numerical simulations. This tiu-ned out to be more natural than
holding the ends fixed as in the original experiments.

20



The pulses become solitons; like solitary waves, their speed is roughly proportional to their

maximum height in the frame moving at the long-wavelength linear speed. This explains

why a family of solitons which stay equidistant should have their peaks lie on a moving line,

an observation illustrated in [16]. Under periodic boundary conditions—where the system

has finite spatial extent—the solitons must occasionally return to positions near their initial

locations, almost restoring initial conditions. Our expectation of this occurring in an actual

physical system is due to the ergodic hypothesis—that in general, each particle, or soliton,

will travel within any prescribed closeness to a given point, arbitrarily often—the same

principle at the root of the equipartition theorem. This provides a kind of satisfaction with

underlying principles'^ that may make up for dissatisfaction with the consequences.

Investigations into soliton equations might have continued to develop qualitatively, growing

alongside numerical simulations of partial differential equations. It could have gradually

extended into the analysis of two-spatial-dimension generalizations of the KdV equation,

such as the Kadomtsev-Petviashvili (KP) equation (cf. Figures 5 and 6). Instead, interest

in this subject experienced explosive growth with the discovery of the "inverse scattering

transform," introduced in the 1967 paper, [10], of Gardner, Greene, Kruskal, and Miura.

They demonstrated that n-soliton solutions of the KdV equation could be obtained more-

or-less explicitly (often in closed form) from an initial profile using analytical techniques.

This provided a precise analytical counterpart to the pictures of initial profiles breaking

into a family of advancing solitary waves. Furthermore, it spurred a variety of further

developments in physics and mathematics in which "soliton" or "KdV-like" equations were

used in the physical descriptions of, e.g., plasma physics, solid state physics, and molecular

biology, with the inverse scattering transform being generalized to solve these equations.

What is valuable about modeling with nonlinear soliton equations rather than "linearizing"

problems is that significant features of the physics may be preserved that would otherwise

be obscured by linearization. Where nonlinearity is unavoidable, usage of soliton equations

and solution by inverse scattering transform may be essential to a researcher's toolkit, and

may be best used in conjunction with linearization—as in "linearization around a soliton

solution," discussed in [5]. However, because of the mathematical sophistication required

to use the techniques, we will merely illustrate inverse scattering for the KdV equation,

emphasizing how the process works for the simplest example.

'^One is reminded vaguely of how some seventeenth century astronomers were dissatisfied with the "imper
fection" of the elliptical orbits of the planets—in comparison with circular orbits—until they perceived the
seeming perfection of the universal law of gravitation at the source.
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Figure 5. A 2-soliton collision dependent on two spatial variables.

Figure 6. A 2-soliton collision on the surface of the ocean.

4. Korteweg-de Vries Solutions and Potentials

Given a potential energy function V(a;)—in either classical or quantum mechanics—we can

use it to glean a variety of information about the corresponding physical system. Sometimes

we don't even need to solve any differential equations to exploit this. For example, recall that,

along the way to deriving Rayleigh's function r](x) from the Korteweg-de Vries equation, we

came upon the equation
6// 9 2 c

h^CQ
1) = A,

where A = 0 due to the boundary conditions. This can be written in the form F = ma

from classical mechanics with m = 1, that is, F — rj'. We then have F{ti) =

Now imagining this to describe a one-dimensional physical system, we can write down the

potential V{r}) from F{7]) — —V'{r]). Taking the integration constant to be 0, we get
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Remarkably, knowledge of V(7?) explains why solitary canal waves always manifest as bumps,

and never as depressions. Here I draw a graph of V against 77; see Figure 7 for the picture.

Figure 7. A picture of the author's graph of V against 77.

Imagine that a solitary wave profile is observed from left to right. At x = —00 it is at

height 77 = 0. If nontrivial, however, it will eventually deviate from this. If, at any point,

77 is positive, then by conservation of energy 7](x) will increase up to 770; on the graph this

corresponds to traveling right, down the potential well and up to the second zero of V'(77).

As 77 = 0 at X = +00, the height 77 will then decrease; this corresponds to traveling left, back

to the origin of the potential diagram. Actually, one could imagine an t}(x) with multiple

positive bumps, corresponding to multiple trips about the potential well. However, we never

have Xo with 77(xo) < 0. If this ever happened then the slippery slope of the potential well for

77 < 0 would cause 77 to continue to decrease as lower and lower potential energies are reached,

eventually diverging. Thus, only nonnegative solitary wave profiles occur in practice.

What about the potential V'(x) in a nonrelativistic quantum mechanical system? In that

case we can use V(x) in the Schrodinger equation to determine the allowed energy levels for

bound states of the system. For our purposes, we normalize the Schrodinger equation to

-^xx + = At/;,
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where ijjxx = ̂5 with eigenvalues A being allowed energies. We also write the equation as

ipxx + (A - V(x))ip = 0.

If we are more ambitious, we can also consider the continuous spectrum associated with the

equation and find its corresponding "scattering data."

Let's be a bit more precise about the distinction between the discrete spectrum (allowed

energies) and the continuous. Since we generally assume V(x) 0 as x ±00, when

A < 0 we get ipxx exponential asymptotics for ip, as x ±00. If we suppose is

proportional, asymptotically, to for x —>• —00, then in general will be asymptotic

to a linear combination of exponentially growing and decaying terms as x —> +00. If we can

find a -0 with exponential decay at both +00 and —00 ends, then it is square-integrable, and

we have a bound state. In that case, A is part of the discrete spectrum for the equation. For

typical V{x) the discrete spectrum will be finite, consisting of Ai,..., Aat, and we often define

= \/|Ai| for notational convenience. When A > 0 we get tjjxx ~ — ̂-0, so solutions tp are,
asymptotically, linear combinations of These functions are not square-integrable,

and so don't form bound states, but they are relevant to the overall description of the

system. Indeed, given k = y/X we can generally define a solution which is a special
linear combination of the possible oscillatory behaviors at infinity, namely ~ -I-

as X -foo and ̂  ~ as a; —>• —00. It turns out that the constants a and 6, or
rather the functions a(k) and b{k), are uniquely determined on their domain for a given

potential V{x), and that |ap + = 1. This gives rise to the image of an incident wave
g-tfci traveling leftward from -hoo; |ap is the probability the wave is transmitted past the

potential to —00 (think of and |6|^ is the probability that the wave is refiected back

to -hoc (think of be^^^). If 6 = 0, then we say that the potential V{x) is "refiectionless."
Remarkably, turning a sech^(x) wave profile upside down and rescaling can sometimes yield
a refiectionless potential; e.g., V{x) = —2sech^(x) is refiectionless.
We work out an example of scattering data collection for the potential

V{x) = —25{x),

where (5(a;) is the Dirac delta. This example is simple except for the complication that

solutions to '^xx + (A — y(a:))V' = 0 need not have a continuous derivative at a; = 0. Nipping

this in the bud, we integrate ipxx + (2(5(x) -I- \)ip = 0 from x = —e to e and then take the

limit as e approaches 0. In suggestive notation, this yields ̂ x(0'^) — V'a:(0~) + 2V'(0) = 0.

In other words, the derivative ̂ x(x) of the function ip jumps discontinuously by —2ip{0)

as X passes from negative to positive; ip itself is continuous. Now let's look for the bound

states—nontrivial square-integrable solutions ip. For this case we must look at A < 0, writing

K = y/m. For X 0, our differential equation is ipxx — K^tp = 0, whose solutions are linear
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combinations of e^'^. If we must look among such functions, the only way ̂  can be square-

integrable is if iplx) = for x > 0 and tp{x) = for a; < 0, for some a and /?. For

to be continuous at 0, we must have /? = a. Then, normalizing so that \ip{x)\^ dx = 1,
we find that \a\ = for simplicity we take a = y/H. For V' to be a solution, however, we

also require that = —2^(0). Calculation reveals that ipx{0'^) =

il)x(0~) = >/«(«), and V'(O) = y/^, so division by —2V'(0) gives the requirement that « = 1.

Thus, Ai = —Ki = — 1 is the only element of the discrete spectrum, and the one bound state

can be written as ipi{x) = What about the continuous spectrum? If A > 0, we let

k = y/X and look for a solution ip satisfying ~ g-tfc® _j_ ^gtfcx Qg x +oo and ̂  ~ as
X  —oo. Clearly this will be accomplished by replacing ~ with = in the former for a: > 0

and ~ with = in the latter for a: < 0, provided ̂  is required to be continuous and satisfy the
jump condition. Continuity at a; = 0 implies a = 1 + 6. We calculate = —ik{\ — h)

and '0x(O~) = —ikcL = —ik{l + 6); subtracting gives 2ikb, so the jump condition becomes

2ikb = —2^(0) = —2(1 + b). Thus, {2ik + 2)6 = —2, or equivalently.

We may also write a{k) = 1 + b{k) = the probability of transmission is |a(fc)|^ =
for incident waves of wavenumber k. All of the scattering data is in hand, and it consists

of: a(k), b(k), and the discrete spectrum (Ai = —1). Actually, it is supposed to include

one more thing, the number ci such that the eigenfunction ipi associated with Ai (so here

ipi{x) = satisfies ip\{x) ~ as a; —> +oo (so here ci = 1).

Given a potential, one can hope to find the discrete spectrum A = {Ai,...,AAr} (and

associated ci,... ,C7v) and the scattering data a{k), b{k) from the continuous spectrum—

what about doing the reverse? Given all of that information, can we "inverse scatter" and

obtain the potential? Yes, actually we can. It turns out that inverse scattering amounts to

solving something called the Marchenko integral equation—a product of the Russian scholars

Gelfand, Levitan, and Marchenko circa 1951—and sometimes this can be done explicitly.

Neither of these processes—scattering and inverse scattering—appear to have anything to

do with the KdV equation. However, what Gardner, Greene, Kruskal, and Miura discovered

in their two-page 1967 paper [10] is the following. If

• for each t > 0 we have a potential Vt{x) with, say, Vt{x) ̂  0 as |a:| oo, the associ

ated discrete spectrum and scattering data being denoted by by Af, Ci(t),..., c/^^((^),

flt(^)) respectively, and if
• the function u(x,t) = Vt{x) solves the KdV equation in the standard form of [6],

then:

• we have a time-independent discrete spectrum Af = Aq with a fixed number of ele

ments N and
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• the scattering data evolve in time according to simple rules, namely c„(t) = c„(0)e^'^«*

for 1 < n < A^, bt{k) = and at{k) = ao{k).

This leads to a method for solving initial value problems for the KdV equation. Here's how

it works:

• Given the initial data u(x,0), define Vq{x) = u(a:, 0) and obtain the scattering data

for V'xi + (A — Vo(a;))^ = 0. Although hard work in general, the basic ideas and many

commonly-occuring examples have been understood since around 1850.

• Having obtained the scattering data Ai,..., A^v, Ci(0),..., ca^(O), ao(fc), bo{k), we evolve

it in time according to the simple rules above. This gives scattering data at time t

for a unique potential Vt{x), where u{x,t) = Vt{x) turns out to be the sought-after

solution to the Korteweg-de Vries equation.

• We calculate our answer u(rc, t) = Vt{x) by solving the Marchenko integral equation,

which makes use of the scattering data at time t collected from the previous step.

We recapitulate many of these remarks as we work through one of the simplest examples

of the inverse scattering method in the first mathematical subsection below.

5. The Inverse Scattering Method: Mathematical Questions

5.1. Can I see an explicit example of the inverse scattering method? One begins

with initial data, say a wave profile at a given initial time (hopefully physically reasonable).

A good example is Rayleigh's function

7;(x,0) = ri(x) = jjjsech^ f V '
with its roughly gaussian profile. Recall that we reduced the KdV equation to the standard

form
du du d^u

by the making the substitutions u = —rj/h, ̂  = X/^, and r = afterwards renaming
^ and T as X and t, respectively. In terms of u(rc,0), where x relabels we get

u{x, 0) = —2sech^a:,

which we write as Vo(a:) = u{x, 0) = —2sech^a:. The simple form of it at t = 0 is the reason
for our choice of standard form for the KdV equation.

We recall that the idea of the subsequent technique is from quantum mechanics. We

use Vo{x) = u{x, 0) as a potential in a normalized Schrodinger equation problem to obtain

scattering data. Then, we evolve this data through time t and "inverse scatter" it to obtain

u{x, t).
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We consider the differential equation —ipxx + Vo(rc)^ = for an unknown function

where subscripts denote differentiation. We rewrite it as + (2sech^a: + A)^ = 0.
Similarly, given Vt{x) = u{x,t) as a function of x at time t, we can associate the equation

—"0x1 + yt(x)ip = In each case we can ask about the eigenvalues A of bound states, and
reflection coefficients 6, as in quantum mechanics.

For the current example's equation, ipxx + (2sech^a; + \)ip = 0, the transformation T =
tanh X given in [6] p. 46 transforms the derivative as ̂  = sech^rc^ = (1 — T^)^. This
yields an associated Legendre equation,

~  ̂

Since our emphasis here is on the process rather than the individual steps, we rely on our

source [6] for the scattering data. From knowledge of this Legendre equation one can deduce

that here there is only one bound state, typically written as the "Goldstone mode" ip\ (x) =

;^sech X with Ai = —1 (so ki = 1). This state's asymptotic behavior is ipi(x) r\^ as
X —> +00. We denote the exponential's coefficient by Ci(0) = \/2. It is significant that at
t = 0 our potential is reflectionless, that is, bo{k) = 0 identically; the simple form assumed

by the auxiliary function F in the Marchenko equation below is a consequence.

As mentioned above, it turns out (proofs are also in [5] pp. 169-171) that the bound state

eigenvalues A for the potentials Vt{x) are time-independent, and that the coefficients c(t)

and b evolve in a simple way when u{x^ t) solves the KdV equation. In fact, here we have

ci{t) = ci(0)e^* = and bt{k) = 0. Having evolved our scattering data, we then solve an
integral equation to inverse scatter. We merely write down the equations and prescriptions,

treating time i as a parameter, not always written explicitly. The reader should not be

alarmed if the equations and prescriptions appear to come out of nowhere. The interested

reader will find a derivation of the Marchenko equation in the next subsection. Our solution

u{x^t) = u{x) is given by u{x) = —2^^^^, where, after defining the auxiliary function
F(x) = Ci(t)e~® to account for our nontrivial scattering data, K{x, z) is the solution to the

Marchenko equation
POO

K{x,z)-\-F{x-\-z)-\- / K(x^y)F{y + z)dy =
Jx

Here F{x-\-z) = so F{x-\-z) is separable. This means it can be written

as a product of the form X{x)Z{z). We take X{x) = and Z(z) = e~^ for definiteness.

Substituting this separated form for F{x + z) = X{x)Z{z) and F{y + z) = X{y)Z{z), we

see K{x, z) can be written as

K{x,z) = -X{x)Z(z) - Z(z) j K{x,y)X{y)dy= (^-X(x)-J K(x,y)X{y) dy^ Z{z).
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We have shown that K{x,z) is also separable, so K{x,z) = L{x)Z{z) for some L{x). Sub

stituting L(x)Z{z) into our equation for K{x^z) gives
roo

L(x)Z{z) + X(x)Z{z) + Z(z)L(x) / Z{y)X(y)dy = 0.
Jx

This is a linear algebraic equation in L{x). Solving it for L{x) yields

l + S-Ziy}Xiy)dy

Recalling that Z{z) = e~^, the solution is K(x,z) = L(x)e~^ where, in detail,

1 -h 2e^^~ye-ydy ~ r+e®^"

Thus, we have
n^St—x

so that K{x, x) = —2 ■ Finally, we obtain u{x, t) = —2^^^ = —2sech^(i — it). For
more general initial data u{x^ 0) we may obtain N bound states, which lead to an A/^-soliton

solution requiring somewhat more effort to compute (when 6 = 0 one must solve N algebraic

equations in N unknowns). When 6^0 there is also non-solitonic "radiation," which often

behaves approximately like a solution to the linear equation obtained from the KdV equation

by removing the nonlinear term. In tasking ourselves with finding K(x,z) from F{x) when

b^O, much depends on how easy it is to work with the inverse Fourier transform of b.

Having arrived at our solution, we can return to our original (non-dimensionless) variables

to see the physical solution. After some algebra, we find that, in the lab frame (not the

frame moving at speed cq—recall X = x — cot, so we go from new x, to A, to old a:).

r}{x,t) = 7/osech^

Thus, the shape and size of the profile, under the idealized assumptions of the KdV equation,

remains exactly the same, a solitary wave traveling to the right with speed (coefficient of t

inside the parentheses)

c = co(l + ̂).

Seeing this formula emerge once more is beautifully consistent with the results of Russell,

Boussinesq, Rayleigh, Zabusky-Kruskal, and Korteweg-de Vries.

5.2. Can I see where the Marchenko integrgJ equation comes from? How can we

sketch a quick derivation of the Marchenko integral equation? We need to come up with

a scheme for scattering that will allow us—somehow—to back-solve for our potential when

the scattering data b{k), etc., is known. We note that our data Cn for the asymptotics of
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the eigenfunctions associated with discrete spectrum elements A„ = — is of the form

~  as rc —> +00," so we will likely need to work with conditions at +00 as

opposed to —00.

Let A = > 0 be given; we want the solution -0 to ipxx + = 0 such that

^ ~ g-tfca: _j_ as X +00. A plan for doing this is to first find a solution to

'tpxx + — y)fp = 0 which satisfies ~ as x —> +00, and then let ̂  = -0+ +
where 0+ is the complex conjugate of 0+. This will give us the right asymptotics at +00 and

we trust that the rest will work out, provided we have 0+. (I will mention a wee detail now

to avoid future confusion. It is the following: at the end we're going to deal with Fourier

transforms, and we want the ± signs of the complex exponentials in the transforms to

come out right. We can arrange for this to happen for 0+, but it will mean that when we

deal with Fourier transforms pertaining to 0+, all of the — signs should be flipped to + in

the exponents of the terms usually integrated against.) Now 0+ is supposed to be a

solution to ipxx + — ̂ )0 = 0; what if we ignore V for a moment? Then, ipxx + ̂̂ 0 = 0 is

what we get when we Fourier transform a wave equation in x and another variable—usually

t, but here called 2:—such as (f)xx — 0zz = 0. We want 0+ as x ̂  +00, so if we think

of 0+ as a Fourier transform, a good first try would be the Fourier transform (with the sign

in the exponent of flipped to get —see previous parenthetical comment)

0+

/oo
5(i-2)e"'^d2 = e«=^

•00

When we're not ignoring V, however, there is no way this will generally be exact.

We add some unknown function K(x,z) to the delta function we're taking the Fourier

transform of to get the true 0+:
/oo poo

(S(x-z) + K(x,z))e'^''dz = e'^''+ / K(x,z)e''" dz.
■00 J —00

An additional restriction must be placed on K{x, z) to avoid the possibility that the integral
on the right will mess up the statement "0+ ~ as x 4-00." One starting point is to
make K{x,z) =0 whenever x +00 for fixed z, and an appropriate way to implement this
is to make K{x, 2) = 0 whenever x > z. Then, since A(x, z) can be nonzero only for 2 > x,
the lower limit of integration on the integral becomes x:

poo
ikx I I ^\„ikz0+ = e^'^^+ / K(x,z)e"'''dz.

J x

Now we force this to really be a solution to il^xx + — V')0 = 0 by calculating (0+)xx +
(A:^ — K)0+ from the above equation for 0+ in terms of K{x^ 2). We omit these calculations,
which may be found on pages 49 and 50 of [6], but state the results. After integrating by

29



parts twice in the integral for one can write the equation as

0 = (v+)x. + (fc' - V)V+ = + 2^j + (A-.. - A:„ - V{x)K) e"" dz.
Above, K{x) = K(x,x). In turn, we can force this equation (and everything else) to work

out by requiring Kxx —I^zz — y(x)K = 0 for 2 > a:, demanding that V(rc)+2^ = 0, and also
enforcing decay of K{x, 2), Kz(x, z) as z +00 to more effectively guarantee that K does

not interfere with ip^ as x —> +00. This problem turns out to always have a unique

solution K by general theory, even though general theory doesn't explain how to calculate

K yet. The main upshot is that once we know K, we can get V from V{x) — —2^.
All that remains is to shift things around to unearth the integral equation that K{x,z)

satisfies—the Marchenko integral equation. Substituting H- K{x^z)e^^^ dz for ■0+ in
the equation 0 = 0+ + b{k)'il)+ gives a result that, after rearrangement, can be written as/OO ^ I'CX)

K{x, z)e~^^^ dz — '^ — — h{k)e^^^ — b{k) / K{x^ z)e^^^ dz.
■00 J—00

We can extend the lower limits of integration from x down to —00 because K(x, z) is zero
there anyway—there is no additional contribution to the integrals. The left side is the Fourier
transform of A, so we can inverse Fourier transform both sides to obtain an equation for K.
This is the Marchenko integral equation, although it requires a little housekeeping to make
presentable.

K{x, z) = ^ y"°° L{x) - e-'"" - b{k)e'^- - b(k) J"" K{x, y)e"^ dy e""dk.

First, we define Fo(x) = ^ to be the inverse Fourier transform of the re
flection coefficient b{k). Moving b{k) inside the y-integral (for notational convenience we're
changed the dummy variable to y to avoid confusion) and swapping the order of integration
allows us to write the mostly cleaned-up equation

A(x, 2) = ^ / (0 - dk - Fo(x z) - J A(x, y)Fo{y + 2) dy.
Right around this point—if not earlier—would be a good time to analytically extend a{k)
and b{k) into the complex plane. They should really have been continued to the real line
before now, in order for their inverse Fourier transforms to make sense.

The last piece of the puzzle is the inverse Fourier transform left standing, the integral over
the real line with respect to k of the integrand ^0 — Clearly the result should be
a function of x and 2, but the precise answer is unclear. However, on pages 51 through 55 of
[6], this integral is calculated by the residue theorem. In fact, 0 has N poles—they are the
poles of a{k)—in the upper half plane of the form this is where we are using the rest of
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f
J —<

our scattering data. The integral is evaluated as

N

dk = 27ri i?„,
n=l

where i?„, the residue at is given by

Rn = i ̂ F„(a; J y)^n{y + 2) dy^ ,
where Fn(a;) = This residue calculation is omitted. We conclude from this that

^  ~ - E '
SO we may write the Marchenko integral equation as

poo

K{x,z) =-F{x-\-z) - K{x,y)F{y-\-z)dy,
Jx

where
N

F{x) = ̂F„(xy,
n=0

we recall that Fo(x) = ̂  6(A;)e*^'^ dk. The derivation is complete.
If the Marchenko equation is any good, then when we feed it the scattering data we

obtained earlier from the potential V{x) = —2S{x), in particular

and Ki = 1 = ci, it will return the potential —2S{x) to us. We give an outline of how this

comes about. To use the Marchenko equation we need F{x), which is Fo(x) + Fi(x) here.

Knowing /ci = 1 = ci gives Fi{x) = = e~®. On the other hand,

1  1 r°° —1

• s/,'*"' •" - S L ITiJ" *
If X > 0, this integral is evaluated with the residue theorem. We choose a semicircular

contour which goes from —R to R on the real axis and then travels counterclockwise in a

circular arc from R back to —R. Evaluating the contour integral for i? > 1 and letting

i? —> 00 yields (from writing the integrand in the form and setting A: = i in the

second factor) the residue whence for x > 0 we have

Fo{x) = = -e-.
ZTT t
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On the other hand, for a: < 0, a similar contour in the lower half-plane gives 0 for the integral

by Cauchy's integral theorem. This means we can write Fo{x) as

FoW =

where the Heaviside step function is = 1 for a; > 0 and if (a;) = 0 for a: < 0. Thus,

F{x) = Fo(x) + Fi(a;) = -H(x)e-'' 6"=^ = //(-a;)e-^

Let's look at what this means for the Marchenko equation
fOO

K{x,z) F{x -\- z) / K{x,y)F{y-\-z)dy — 0.
Jx

We see that for a; -I- 2 > 0 the term F{x + 2:) is 0 because of the H{—x) factor in F{x).

Moreover, since y > x in the integrand, y -\- z > 0 for y between the limits of integration,

and the Marchenko equation becomes

K{x,z) = 0

for a: -t- 2: > 0. For a: -I- 2: < 0, on the other hand, F{x z) = but the only y > x ior

which y -I- 2: < 0 (where F{y -I- z) might be nonzero) are those satisfying y < —z. Thus, we

can take —2; to be the upper limit of integration for our integral. Solving for the integral

gives

f K{x,y)e~^~^ dy =—K{x,z) —
Jx

Multiplying both sides by gives

i K{x^y)e ̂  dy = —K{x,z)e' — e

Here I see that the equation looks like the calculus equation ae~^ dy = —ae^ -1- ae~®

for a definite integral, so I guess that K{x^y) is the constant a that would make these two

equations the same, namely a = —1. This shows that K{x^z) = —1 for a; -h 2: < 0 and

F(x, 2:) = 0 for a: -k 2: > 0 is consistent with the Marchenko equation, that is, it is a solution.

However, it turns out that solutions to the Marchenko equation are unique, so this answer

must be the correct one. We can write our solution as

K{x, z) = —H(—x — z).

Then V{x) is given by V{x) = Clearly k{x) = K{x,x) is just —H{—2x) =
—x) since the Heaviside function is unchanged by a horizontal rescaling. We conclude,

by (i) the chain rule, (ii) the fact that H'(x) = 5(a;), and (iii) <5(—a:) = (5(a:), that

V(x) = -2(-H{-x))' = 2H'{-x){-l) = -28{-x) = -28{x),

as expected.
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The reader interested in working out a nontrivial example of solving a KdV initial-value

problem with the Marchenko equaiton is encouraged to solve

du „ du ^

'at ~ di ^ "
with the initial condition

u{x,0) = —6sech^(a;).

This corresponds physically to an initial profile of a solitary wave with three times the height

it is "supposed" to have. The reader can carry the whole solution process through by taking

the normalized Schrodinger equation and substituting T = tanh(a:) to reduce it to Legendre's

equation, obtaining two bound states and b{k) = 0 (the reader may take my word for the

latter). After evolving the scattering data through time using the rules stated earlier, the

Marchenko equation yields u{x, t) = Vt{x). Since b{k) = 0, the input F{x) for the Marchenko

equation is as sum of multiples of two exponentials, so F{x -\-z) = Xi{x)Z\{z) -f X2(x)Z2{z)

for the reader's choice of A'i(a:), Z\{z)^ ̂ '2(0;}, and Z2(z). From this presentation of F{x-\-z)

it is easy to see that K{x^ z) may be written as K(x, z) = L\{x)Z\{z)-\rL2(x)Z2{z). Plugging

this and the emphasized presentation of F(x-\-z) into the Marchenko equation gives two linear

algebraic equations in the two unknowns Li{x) and L2{x) due to the linear independence of

the two exponentials in the definition of F, as functions of 2. Solving these allows K{x^ 2),

and hence u(r,i), to be written explicitly. In fact, I obtain

/  1 r. 3 + 4 cosh(2a; — St) cosh(4j; — 64^)Uiisc^ 12 n ■
(3cosh(rc — 2St) -1- cosh(3a: — 36^))

The interested reader with access to a computer can then plot this exact analytic expression

and animate it to watch a movie. What will be observed is a too-high^^ solitary wave breaking

up into a 2-soliton. After emerging, the two bumps proceed to travel at essentially constant

"eigenspeeds" indefinitely. One can also start the animation from a negative value of time

to see a "collision." See Figures 8 through 15. The reason all of this can be done so nicely

is that we can evolve the scattering data using simple rules and because, as I have claimed,

b{k) = 0 identically. In other words, the potential is reflectionless, an assertion examined in

the next subsection.

14To quote Dr. Don Gurnett, it is "two-high."
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Figure 8. A plot of —u against x for t = —0.25.
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Figure 9. A plot of —u against re for t = —0.1.
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Figure 10. A plot of —u against a; for t = —0.05.
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Figure 11. A plot of —u against x for t = 0.
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Figure 12, A plot of —u against x ioit = 0.05.

Figure 13. A plot of —u against a: for t = 0.1.
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Figure 14. A plot of —u against x iov t = 0.25.
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Figure 15. A plot of —u against x ioi t = 0.5.
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5.3. When is a vertically scaled solitary wave a reflectionless potential? The skep

tical reader may be forgiven for not wanting to accept my claims about certain potentials

of the form V{x) = —aosech^(a;) being reflectionless without explanation. To find out which
choices of vertical scaling^® Oq imply h{k) = 0 we must return to the associated Legendre
equation and derive the asymptotics needed to calculate b{k) for the hypergeometric solu

tions corresponding to the continuous spectrum. It will save time to instead cite a source,

such as page 47 of [6], which provides such asymptotics. There, Drazin and Johnson say

that it is a "fairly simple exercise to confirm" (yet I think this will depend on the reader)

that when

ii{x) ~ a{k)e'""'

as x ̂  — GO, "we obtain

;  ̂ a(fc)r(c)r(a + 6-c)__ifa a{k)r(c)T{c-a-b)
r(a)r(6) r{c-a)r(c-b)

as I ̂  +00." Here, "a = j — ifc + (oo + 6 = | — ifc — (oq + and c = 1 — ik."
Whether a simple exercise or not, the above result will certainly look intimidating to any

reader unfamiliar with Euler's gamma function r(x), so we discuss some properties of that

function in a moment. Comparing this with the condition "-0 r\j g -\-b{k)e^^^ as X —>■ -f-oo"
shows that the coefficient of is b{k), and a{k) may be found by setting the coefficient
of to 1. It turns out that to see when b{k) is zero, however, it suffices to examine the
effect of the bottom portion, so we write

r(a-a)r(a-6) " r(i-(ao + i)i/2)r(i + (a„ + i)i/2)'
We will see how this answers our question of when b{k) = 0 once we work out a couple of
needed example problems involving the function r(rc) of a real variable x. I have tried to
write these mathematical examples so that at least the ideas I think are important are clearly
visible. The strategy for the second one may originate with Emil Artin. For full detail, the
reader might need to verify or look up a few facts.

Example 1: Observe that, if s(a;) = sin(7ra:), then the double angle formula may be
written in the form s(a:) = 2s(|) cos(7r|) = 2s(|)s(^). Is a similar relation true for
the function r(a;) defined, for a; > 0, by r(x) = To check, we write it
more simply, that is, as a limit. Replacing oo with n and e~^ with (1 — simulta
neously and letting n become large, we find that r(x) = lim„_^oo /o"(l ~ =

hope the reader will handle with equanimity the fact that the letter a is used three times below, as the
transmission coefficient a(fc), an abbreviation a of Drazin and Johnson, and as the vertical scaling oq. Thank
goodness for subscripts.
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lim„_^oo i(a;+i)'"(a+n)' ^hcre in passing to the final equality we have integrated by
parts n times. This explicit limit is Gauss's definition of the gamma function. It

has the advantage of converging whenever x isn't a nonpositive integer, so it defines

r{x) for such X even if x < 0. To compare r(x) with s{x) we consider, instead of

2r(|)r(^|^), the quantity 2®r(|)r(2^) for fixed x > 0. It equals
X  X±l. .2

lim 2- ' ("') ^
[(!)(! + 1)... (I + n)l[(^)(^ + 1)... (2±1 + n)l •

This does not look like r(i). It does simplify a little, to lim„_.oo

This still doesn't look like r(x), but if we take the sequence whose limit Gauss

defines to be r(x) and consider it only for even integers m (a subsequence, m =

2,4,6,..., 2n,...) then we see that

2-r(2)r(2±il - lim ^^ M2IU 2 (3. + 2n) (2n)!v/H x + 2n + l ^ ̂ ^ '
where

(n!)222" ^
lim .. ^ = VTT
n-koo [2n)\y/n

is a standard limit computed by showing that the ratio of the integrals of sin^"(x)
and sin^"''"^(x) between 0 and 7r/2 goes to 1 as n -4- 00. Thereby, a limit for tt
is obtained whose square root yields the above limit (this method of obtaining the

limit for y/ir due to Wallis is a substantial exercise in calculus textbooks like [17]).

Anyway, we have obtained Legendre's famous "duplication" or "half-angle" formula

for the gamma function, often written

^/^^(x) = 2^-ir(f )r(2±i).

It is amusing that when x = 1 in the above formula, and after verifying that r(l) = 1,

we can substitute t = u'^ in the integral with which we originally defined the gamma

function. This yields the cute identity = r'(l) = e~^^du.
Example 2; We we wish to find out if it would be possible for us to graph the function

/(x) = r(x)r(l — x)sin(7rx) by hand. Unfortunately, it appears that /(x) is not

defined when x is an integer, as r(x) is not defined for nonpositive integers. However,

the reader may verify from Gauss's limit for r(x) that r(l ± x) = (±x)r(x). Then,

we may write r(x) = and use the Taylor series for the sine function to write

/(a:) = ^ r(l - x) sm(7rx) = r(l x)r(l - x) f TT — -t- -^1 ... j .
The right side is defined at x = 0, and letting /(O) = tt ensures that / is continuous

there, as r(x) ̂  1 when x —>• 1. What about integers n 7^ 0? We don't have to worry
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about them because / is a periodic function (this is what drew it to my attention

in the first place). Indeed, both r(a;)r(l — x) and sin(7rx) are functions h{x) which

satisfy h{x + 1) = —h{x) (antiperiodic of period 1). E.g., replacing x with a; + 1 in

h{x) = r(x)r(l —x) gives h{x-\-l) = r(a: + l)r(l — (a: +1)), which can be written as

rcr(a:)r(—a:) = —r(a;)(—a:)r(—x) = —r(x)r(l — x) = —h(x).

Thus, the product function f{x) satisfies f{x-\-1) = (—l)^/(a:) = f{x) (periodic of

period 1). Due to periodicity, letting /(n) = tt for all integers makes / a continuous

(in fact smooth) periodic function of period 1 on the whole real line. Does this

function have any zeros? By periodicity, it suffices to check the interval (0,1), and

since sin(7ra:) is positive there and r(a;)r(l — a:) is positive there (the integrals are

positive), it follows that f{x) > 0 for all x. To see how the values of / relate to

each other in (0,1), we can multiply the double-angle formula s(a;) = 2s(|)s(i^) for
s(a:) = sin(7ra;) with the Legendre relations for T at both x and 1 — a;. Equivalently,

multiplying f(x) by tt to write 7r/(a;) = 0rr(a;)v^r(l — a;)s(a;) for computational

convenience and expanding multiplicatively gives

irf{x) = 2''-'2('--'-'r(f)r(i±^)r(i^)r(i±i^)2s(f )s(i^) = /(f )/(i±£).

What is this telling us? To change it into something more comprehensible, we apply

logarithms to both sides to transmute the multiplication to addition. Letting g{x) =

logfi we have

loge(7r) g(x) = g{fj -\-g^^).

We can use this growth relation to get an estimate for how the graph bends, which

is determined by g"{x). Taking derivatives twice and applying the chain rule, we get

s"W = j(s"(f)+9"(¥))-
To obtain an estimate for the bending as a function of rc, \g"{x)\^ we first let M =

max|5r"(a:)| > 0 be the maximum magnitude of g"{x) on the real line. (As \g"(x)\

may be shown to be continuous, it attains a maximum value on [0,1]; a one-sentence

proof that continuous functions on closed intervals attain maxima may found in [8].

By periodicity, this maximum is also the maximum over the real line.) For some Xq,

we have \g"{xo)\ = M > \g"{x)\ for all x. Estimating, we find

\g"{x)i<UM + M) = f.
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Thus, the bending of the graph never exceeds half of the maximum bending of the

graph. At a: = xo this says

M = |s"(io)| < f.

If M > 0, then M > M/2, which is inconsistent with this estimate. As M > 0,

we are forced to conclude that M = 0, so g"{x) = 0 for all x. Thus, the graph of

g experiences no bending, and must be a straight line. But g is periodic! The only

way that a straight line can be a graph of a periodic function is if it is horizontal. In

other words, the function g{x) = logg (f(x)), and hence f{x), is constant (something

we can graph!). As /(O) = tt, it follows that for all a;,

r(a;)r(l — x) sin(7ra:) = f{x) = tt.

Defining uhy x = ̂—u, this can be written alternatively as Euler's refiection formula.

r(i-«)r(i + «) =
TT TT

sin(| — TTu) cos(7r«)

Rearranging to apply to the problem of reflectionless sech^(a:) potentials, we get

1  cos(7ru)

r(i-«)r(i + «)= TT •
Returning to our refiection coefficients b(k)^ we apply Euler's reflection formula to obtain

1  cos (7r(ao +
b{k) DC

r(i - (ao + + (00 + i)i/2)

I have claimed that VaQ=2{x) = —2sech^(a;) and Ko=6(^) = —6sech^(a;) are reflectionless
potentials. This follows immediately from the proportionalilty relation above. Plugging in

ao = 2 and oq = 6 make (ao + equal to | and | respectively, and since cos(^) =
0 = cos(^) the refiection coefficient is proportional to 0 in these cases, that is, b{k) = 0
identically. See Figure 16. In general, we see that I4o(^) — —aosech^(a;) gives rise to a
reflectionless potential when, for some nonnegative integer A,

or when no + ̂ = (-^ + 2)^' ~ N{N + 1). In retrospect this is not too surprising,
due to the connection we've seen between the sech^(a;) potential and the associated Legendre
equation. As is well known, the ordinary Legendre equation has eigenvalues N{N + 1), and

one could perhaps quote results from its theory that reduce the possibilites for reflectionless

potential scalings to these. Nevertheless, I personally have found it satisfying to feel out

these historically well-traveled connections with bare hands.
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Figure 16. The A:-independent proportionality factor —) £qj.
scattering coefficient, plotted against oq. This factor is seen to be zero for
ao = 2 and oq = 6, with the next reflectionless potential—for the 3-soliton
solution—corresponding to Oq = 12. These special ao are of the form iV(A^+l).

5.4. Why is the discrete spectrum time-independent for KdV potentials? Finally,

we come to a real mystery. The scattering and inverse scattering, though necessarily elab

orate, always work in reasonable situations; this has little to do with the KdV equation.

The fact that explicit formulas can be obtained for 7V-soliton solutions to the KdV equa

tion is interesting and surprising to me, but is ultimately explained by a study in special

functions. The most mysterious thing here, I think, is that the inverse scattering method—

specifically that the scattering data evolves through time according to simiple rules—exists

at all. There's no mistaking the fact that this has to do with the potentials Vt(x) forming

a solution u(x^t) = Vt{x) for the KdV equation specifically. Thus, any ability we have to

apply what we've learned here to other equations and contexts will depend on how well we

are able to explain the scattering data evolution.

At the root of understanding this evolution is the fact that the discrete spectrum At of the

normalized Schrodinger operator with potential Vt{x) is time-independent, that is. At = Aq.

Recall that it is only after we know this that we can define Cn{t) for all t by i/jjiix) ~

as a: -> CO for appropriate time-dependent ipn solving the normalized Schrodinger equation

with potential Vt{x). We could allow the Kn to depend on t and attempt in this way to find
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u{x^t) that solve other equations, but it might well be that we obtain a different sort of

formula for u{x^ t) at every time t (but I couldn't solve Marchenko when varies anyway).

It is awfully convenient that At = Aq.

To properly understand the spectrum, we should phrase our question in terms of linear

operators. We define the normalized linear Schrodinger operator L by Lv =

where u is our potential and subscripts denote differentation. When we allow u = u{x,t)

to vary with time, L becomes indexed by t. Then our question is, "Why is the discrete

spectrum of this symmetric operator time-independent when u solves the KdV equation?"

The evolution of At should be determined somehow by the evolution equation giving

But calculating this quantity, L, (noting that the time derivative of the operator ̂  is 0 as
the operator itself is time-independent) gives

Lv = %v,

which by itself explains nothing: I can use the KdV equation to write ̂  and
then I am stuck. This is a similar problem conceptually to how a solitary wave r}{x^ i) =

T}(x — ct) solving the KdV equation satisfies ̂  = 0, and its governing equation even
reduces to this when you plug in 7], yet the linear operator Kw = ̂  -h is no KdV
equation. The information we want is not at the surface.

There are many strategies before us, and none look promising. Earlier, we wrote the

replacement for c, cc, in terms of 77 to obtain the correct form of the governing equation.

Our problem here can perhaps be solved similarly by writing L in some appropriate form,

possibly in terms of L. Yet with no guide as to what to expect, this turns out to be an onerous

task. A much more direct approach to showing the discrete spectrum is time-independent

is to somehow show, starting from the eigenvalue equation Lv = Xv, that ̂  = 0 identically.
For this it suffices, in principle, to differentiate the eigenvalue equation and solve for

We will be able to calculate this quantity. A, in terms of things known to us, but only if

we know v, the time evolution for the corresponding eigenfunction of L. We can find out

what this is, but that involves writing out the equation Lv = Xv explicitly, solving for u,

and plugging that into the KdV equation—quite a mess. Worse, A will get in the way—and

that's what we are trying to find. In fact, it looks like we would be better off going through

that process and solving for A instead of v, finding an ad hoc argument (integrating over

space and invoking the supposition that u(x, 0) —0 as |a;| —>• 00, maybe more than once) to

show A = 0 afterwards. It appears that this is what Gardner, Greene, Kruskal, and Miura

actually did in [10]. The point is that, yes, we can write the time evolution operator Mv = ̂
for V in such a way that only space-variable operations appear, but we would probably need

^ first, so we do not come out ahead. At this point it seems clear that I have to roll up my
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sleeves and apply the quotient rule to u = ^ product, and power

rules to u = -0" Vxx + A.

Instead, I look in the standard graduate text by Evans (which does not treat inverse

scattering—so no spoilers) on partial differential equations in the hopes of finding something

useful. I quote an entire exercise statement from page 247 of [7].

(Lax pairs) Assume that {L(t)}t>o is a family of symmetric linear operators

on some real Hilbert space H, satisfying the evolution equation

L = [B,L] = BL-LB,

for some collection of operators {B(t)}t>o. Suppose also that we have a cor

responding family of eigenvalues {A(i)}f>o and eigenvectors {if(t)}t>o :

L{t)w{t) = X(t)w{t).

Assume that L, B, A, and w all depend smoothly upon the time parameter t.

Show that

A = 0.

Below I include my solution to this exercise, which will indeed apply to the L we have chosen.

In fact, I leave it to the interested reader to find a B = B{t) that works. Start from the

ansatz Bv = aVxxx + buvx + cUxV, with a, 6, and c constant. The patient reader can show

that for a suitable choice of these constants, we have

SO that we obtain Lv = .^v = [B,L]v identically in v—and hence a time-independent
spectrum—when u solves the KdV equation. This, at least, provides one answer to the

question of this subsection. The pair (5, L) is called a "Lax pair" for the KdV equation. A

systematic search for soliton equations—each with their own "inverse scattering transform"—

may be initiated by writing down all of the symmetric differential operators L you can think

of and seeing, for each, if there is a differential operator B whose commutator with L gives

an operator which is multiplication by the right side of an evolution equation of the form

^ = F(u, |j, 1^,...). Yet little will be found. If one is willing to use matrices of differential
operators in defining L, however, then several famous soliton equations can be found this

way: the Boussinesq equation, the sine-Gordon equation, and the nonlinear Schrodinger

equation in one spatial dimension (though this last requires significantly more work to find

this way), these last two being introduced by [5] in appropriate physical contexts.

Note that my proof of the Lax pairs theorem makes no use of completeness, so the Lax

pairs construction originating in [18]—Lax's paper on solitary waves, begun around the time

of publication of the paper of Gardner, Greene, Kruskal, and Miura—will apply in any inner
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product space. The proof for Hermitian operators in complex inner product spaces is entirely

analogous because all of their eigenvalues are real.

Proof: The equation X{t)w{t) = L{t)w{t) is differentiated with respect to t. This yields

Xw + Xw = ̂  {X{t)w{t)) = ̂  {L(t)w{t))
= Lw + Lw

= {BL — LB)w + Lw

= BLw — LBw + Lw.

This implies that

Xw = BLw — LBw + Lw — Xw.

Since {L{t)u,v) = {u,L{t)v) for all u, v, calculating the quantity X{w,w) obtains

X(w, w) = (Alt;, w) = {BLw — LBw + Lw — Xw, w)

= (BLw,w) — {LBw,w) + {Lw,w) — {Xw,w)

= {BXw, w) — {Bw, Lw) + {w, Lw) — X{w, w)

= {XBw, w) — {Bw, Xw) + {w, Xw) — X{w, w)

= X{Bw, w) — X{Bw, w) + X{w, w) — X{w, w)

= 0.

Since w{t) is an eigenvector for each t, w{t) ̂  0 for each t by definition, so {w{t), w{t)) never

vanishes. Dividing by {w{t),w{t)) in the equation X{t){w{t),w{t)) = 0 gives A = 0. □

5.5. What is the inspiration for Lax pairs? I do not know the answer to this question.
Lax in [18] certainly speaks of various unitarily equivalent operators, so he may have had
similar matrices in the back of his mind. One simple way to generate a family of matrices
L{t) which all have the same set of eigenvalues is to take any constant matrix C and any
family of invertible matrices A{t). Then

L{t) = A{t)CA{t)-^

has the same eigenvalues as C for all t. As shown in [14] by explicit calculation, this implies
that

L(t) = [B(t),L{t)],

where

B = AA-\
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Someone aware of this result might be inspired to ask if the converse is true: if this evolution

equation holds for some B(t), then must the set of eigenvalues of L{t) be time-independent?

This would then lead to the Lax pairs theorem.

I would like to offer one other possible source of inspiration, which I found on my own—

though it is hopefully well known. My idea begins more generally: suppose the eigenvalues

of any linear operator L{t) are time-independent, so that for eigenvalue equations of the form

Lv = Xv, the eigenvalues A axe truly constant. Now we differentiate both sides, obtaining

Lv->r Li) = Xi).

Thinking physically, we define the time-evolution operator M for the eigenfunctions by

Mv = i). Substituting Mv for i) in the above equation gives

Lv 4- LMv = XMv.

Now slip A inside M:

Lv -h LMv = MXv = MLv

(this is an equation basically of the form f'g -H fg' = {fg)'). Finally, we transpose LMv:

Lv = MLv — LMv = [M, L\v.

If the eigenfunctions form a basis or complete set, then this equation will be true for all

elements v of the vector space by writing arbitary elements as linear combinations of basis

elements. Thus,

L = [M,L\,

where M is the time evolution operator.

Concluding Remarks: Fiber Optics

One of the applications of soliton theory provides an amusing epilogue to the story of

Russell and his interest in solitary waves. As was done in the nineteenth century with the

assistance of ships such as Russell's The Great Eastern, cables are again being laid under

the ocean for communication between Europe and North America. Though Russell's boat

is not being used, the theory arising from his work still plays a crucial role. The cables this

time are not electronic but optical.

As Hasegawa and Tappert predicted in 1973, see [12], utilization of the nonlinear depen

dence of the index of refraction on intensity "makes possible the transmission of picosecond

optical pulses without distortion in dielectric fiber waveguides with group velocity disper

sion." Moreover, "numerical simulations show that above a certain threshold power level

such pulses are stable under the influence of small perturbations, large perturbations, white
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noise, or absorption." The information in the optical fiber is carried in the form of solitons—

solitary waves of light. Just as Russell's wave on the canal sped on "without change of form,"

optical solitons are remarkably effective in preserving communications data sent over long

distances.

Yet according to [20], "Their result was, for the most part, regarded as the satisfaction

of idle mathematical curiousity with few application possibilities." Instead, the 1970's saw

heavy investment in linear fiber optics, and data losses proved a major obstruction. It was

not until the 1980's that Hasegawa and Tappert's predictions for nonlinear optics were tested.

As [20] states, "The results catalyzed explosive growth in nonlinear optics." Information on

this subject can be readliy acquired from Boyd's text [3]; see especially Chapter 8, and also

check out Raman scattering in Chapter 10—it can be used to boost energy to compensate

for long-distance loss.

Today, the idea that weak intrinsic optical nonlinearity of the glass core in a fiber can be

balanced with weak waveguide dispersion—in a manner leading to solitons—is well estab

lished, and exploited to the hilt. As the Fiber Optic Reference Guide [11] says, "The ability

of soliton pulses to travel on the fiber and maintain their launch wave shape makes solitons

an attractive choice for very long distance, high data rate fiber optic transmission systems."

Further Directions

Here are two further directions for study not explored here. One is the application of

soliton equations to biological systems. For example, the KdV equation can be used as a

rough model for blood pressure pulses. How well does this work? What other biological

systems can be modeled by soliton equations? Known examples include energy transfer

in proteins and DNA fiuctuations, but there are probably many more. Another direction

for further study is the examination of generalizations of various soliton equations (KdV,

nonlinear Schrddinger, etc.) to more than one spatial dimension. For example, the soliton

resolution conjecture—of current research interest—says that "most" finite-energy initial

conditions for the three-dimensional nonlinear Schrddinger equation exhibit behavior very

much like that for the one-dimensional equation—initial profiles break up into a family of

soliton-like waves plus "radiation." Yet the nonlinear Schrddinger equation in dimensions

greater than one is not a soliton equation. How can this conjecture be reconciled with

the rather non-KdV phenomenon of "soliton collapse" that occurs in two dimensions for

nonlinear optics and three dimensions for plasma theory?

Photograph Acknowledgements

The photograph in Figure 1 is from a meeting at Heriot-Watt University of Edinburgh

in 1995. Scientists tried to recreate a solitary wave in the Union Canal, where John Scott
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Russell had first observed the phenomenon. The picture is due to Chris Eilbeck and Heriot-

Watt University. The photograph in Figure 6 of the collision of two small-amplitude solitons

(a 2-soliton) is from the west coast of the US, on a beach in Oregon. The picture was taken

by Terry Toedtemeier in 1978.

Further Reading

I have found three texts to be particularly helpful. From the viewpoint of pure math

ematics, the text [14] by Kasman has been invaluable; it is perhaps the most elementary

introduction, and its third chapter greatly influenced the opening section of this essay. How

ever, being only a "glimpse" of solition theory, some of the essentials—the physics and the

inverse scattering transform—are left out. For physical context and an introduction to hy-

drodynamic and topological solitons, see [5] by Dauxois and Peyrard. This book devotes a

chapter to the modeling process for ion acoustic waves in a plasma, and also includes many

sample applications from solid state physics and molecular biology. Finally, for actually

using the inverse scattering transform, the applied mathematics perspective is most natural.

The book [6] by Drazin and Johnson is a concise and effective introduction to this area.
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