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ABSTRACT

During the Spacelab-2 mission, the University of Iowa's Plasma
Diagnostics Package (PDP) was released from the space shuttle to
investigate plasma effects in the near-shuttle environment. At times
during this freeflight when the PDP was magnetically connected to the
shuttle, an electron gun in the shuttle cargo bay ejected a nearly
field-aligned | keV - 50 mA electron beam. During these beam ejec-—
tions, the plasma wave instrument onboard the Plasma Diagnostics
Package detected intense whistler-mode radiation from the beam. This
thesis presents a detailed study of a whistler mode emission detected
during one period when Lhe beam was ejected continuously for about 7
minutes. The electrie field polarization of the detected whistler
mode signal is consistent with propagation near the resonance cone.
Calculations indicate that the beam radiated approximately 1.6 mW in
the whistler mode as the beam traversed the 200 meters From the
shuttle to the PDP. The emissivity also decreased by about a factor
of 10 over this same distance. The measured wave powers are 10/
greater than wave powers expected from incoherent Cerenkov radiation,
verifying that the radiation is generated by a coherent process.

One coherent wave generation mechanisms considered in this study
is the whistler-mode instability in the beam; however, it has been

concluded that this instability cannot sufficiently amplify the




radiation to the measured power levels since the path length for wave
growth in the beam is much smaller than the estimated whistler—-mode
wavelength.

Another wave generation process considered is coherent Cerenkov
radiation from electron bunches formed in the beam by an electrostatic
beam—plasma instability. A one-dimensional simulation of the SL-2
electron beam verifies the existence of these electron bunches, and
the calculated coherent power radiated from this modeled beam is near
the power levels measured from the SL-2 electron beam in the
whistler mode. Including coherent Cerenkov radiation effects in the
calculation of the power increases their values by nearly 90 dB's
above incoherent power levels. Consequently, this mechanism ecan
account for the whistler-mode radiation detected by the PDP during its
encounter with the 1 keV - 50 mA electron beam.
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ABSTRACT

During the Spacelab-2 mission, the University of Iowa's Plasma
Diagnostics Package (PDP) was released from the space shuttle to
investigate plasma effects in the near-shuttle environment. At times
during this freeflight when the PDP was magnetically connected to the
shuttle, an electron gun in the shuttle cargo bay ejected a nearly
field-aligned 1 keV - 50 mA electron beam. During these beam ejec-—
tions, the plasma wave instrument onboard the Plasma Diagnostics
Package detected intense whistler-mode radiation from the beam. This
thesis presents a detailed study of a whistler mode emission detected
during one period when the beam was ejected continuocusly for about 7
minutes. The electric field polarization of the detected whistler
mode signal is consistent with propagation near the resonance cone.
Calculations indicate that the beam radiated approximately 1.6 mW in
the whistler mode as the beam traversed the 200 meters from the
shuttle to the PDP. The emissivity also decreased by about a factor
of 10 over this same distance. The measured wave powers are 107
greater than wave powers expected from incoherent Cerenkov radiation,
verifying that the radiation is generated by a coherent process.

One coherent wave generation mechanisms considered in this study
is the whistler-mode instability in the beam; however, it has been

concluded that this instability cannot sufficiently amplify the
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radiation to the measured power levels since the path length for wave
growth in the beam is much smaller than the estimated whistler-mode
wavelength.

Another wave generation process consldered is coherent Cerenkov
radiation from electron bunches formed in the beam by an electrostatic
beam-plasma instability. A one—-dimensional simulation of the S5L-2
electron beam verifies the existence of these electron bunches, and
the calculated coherent power radiated from this modeled beam is near
the power levels measured from the SL-2 electron beam in the
whistler mode. Including coherent Cerenkov radiation effects in the
caleculation of the power increases their values by nearly 90 dB's
above incoherent power levels. Consequently, this mechanism can
account for the whistler-mode radiation detected by the PDP during its

encounter with the 1 keV - 50 mA electron beam.
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CHAPTER I

GENERAL INTRODUCTION

The results of a study of a whistler-mode emission detected from
an artificial electron beam during the space shuttle's Spacelab-2
(5L-2) mission are presented in this thesis. The study includes a
measurement of the total radiated power from the beam in the whistler-
mode and a comparison of this power to the power predicted by various
whistler-mode radiation mechanisms.

The Spacelab-2 flight, which was launched on July 29, 1985,
included an electron gun called the Fast Pulsed Electron Generator
(FPEG) from Stanford University, and a spacecraft called the Plasma
Diagnosties Package (PDP) from the University of Iowa. During a 6-
hour peficd on August 1, 1985, the PDP was released from the shuttle
to investigate plasma effects in the vicinity of the shuttle. During
the PDP free flight, the shuttle was maneuvered so that the PDP passed
near magnetic field lines connected to the shuttle. Four such mag-
netic conjunctions were achieved. During one of these magnetic con-
junctions a 1 keV - 50 mA electron beam was continuocusly ejected from
the shuttle so that radiation effects could be monitored as the PDP
passed near the magnetic field line carrying the beam. Figure 1 shows
a frequency vs. time spectrogram from the PDP plasma wave instrument
during this electron beam event. The funnel-shaped signal extending

from the electron cyclotron frequency, f., down to approximately 30

c1



kHz is whistler-mode radiation from the electron beam. This whistler-
mode radiation was first described by Gurnett et al. [1986] and is the
subject of this thesis.

The observation of this beam-generated whistler-mode signal is not
unusual; in fact, whistler-mode radiation is frequently detected from
both artifiecial and natural electron beams in the ionosphere. The
Eollowing briefly describes some of these electron beams and the
corresponding radiation detected.

The first artificial electron beam experiment was performed in the
ionosphere in 1969. An electron accelerator was flown on an Aerobee
350 rocket and injected a 9.5 keV/490 mA pulsed electron beam into the
ionospheric medium [Hess et al., 1971]. Although ground-based radio
receivers did not detect any beam-generating emissions, the beam did
propagate ~ 200 km into the lower ionosphere where it was observed
optically. This experiment demonstrated that artificial electron beams
could propagate great distances without being destroyed by beam—
generated instabilities.

During the seventies and eighties, an investigative group at the
University of Minnesota performed a number of electron beam experiments
in the ionosphere with two stated purposes: first, to study the elec-
tron beam, including its emitted radiation and its effect on the beam-
ejecting spacecraft; and second, to use the beam as a diagnostic tool
to further understand processes occurring in the magnetosphere and
ionosphere [Winckler, 1980]. Specifically, their electron Echo experi-

ments were designed to inject an electron beam on closed field lines



into the conjugate hemisphere and analyze the returning electrons
(electron "echoes") to identify any physical processes involved. To
study the plasma and radic waves emitted From these beams, a radio
receiver, typically located in the rocket nose cone, was separated
from the main payload. During beam injections these receivers detect-
ed waves in the whistler mode, at the upper hybrid/plasma frequencies
and at electron cyclotron harmonics (ECH) [Cartwright and Kellogg,
1974; Kellogg et al., 1976; Monson et al., 1976: Winekler, 1980].
Recently, the scientifiec objectives of the latest Echo experiment,
Echo 7, were pfes&ntad and again include an extensive electron beam
investigation [Winckler et al., 1986].

Observations of beam—generated emissions were also made during
the joint Franco-Soviet Artificial Radiation and Aurora between
Kerguelen and the Soviet Union (ARAKS) experiments in 1975 (Lavergnat
et al., 1980). Like the Echo experiments, a diagnostics package was
carried in the nose cone of the rocket and separated from the main
payload. During electron beam injections, radio receivers flown on
this package detected waves in the whistler mode, near the local
plasma frequency, and near the fourth harmonic of the electron cyclo-
tron frequency (an ECH emission) [Lavergnat et al., 1980; Dechambre et
al., 1980a, Dechambre et al., 1980b].

Electron beams have also been used to probe structures occurring
in the auroral region. Such an example is the "EIB" experiment that
was launched inte an auroral arc. During the Fflight, an electron beam

was injected along geomagnetic field lines to locate the regions of



parallel electric field that generated the are. It was belisved that
part of the injected electron beam would reflect from these regions;
however, few reliable signatures of the returning electrons were
detected during the experiment [Wilhelm et al., 1980]. A second
flight under the same investigation, the NVB-06 flight, was launched
in December of 1979. During pulsed electron beam injections, Kellogg
et al. [1986] again reported observing waves in the whistler mode, at
the upper hybrid frequency, and at the fundamental and first harmonic
of the electron cyclotron frequency. The relative intensity and
frequency spectra of the waves were also observed to vary with the
beam energy and current, and may have been associated with beam plasma
discharge (BPD) effects (see Bernstein et al. [1979]).

A unique facility used for beam—-plasma research is the Johnson
Space Center (JSC) plasma chamber. This cylindrical chamber has a
height of 27.4 m and a diameter of 16.8 m, and is large enough to
allow space-like experiments to be performed in a laboratory environ—
ment. BSuch experiments performed on injected electron beams include
measurements of the emitted radiation and a study of BPD effects
[Shawhan, 1982]. For a review of the results from these experiments,
see Grandel [1982].

Electron beam injection experiments in the ionosphere have also
been performed on the space shuttle. Since the electron beams and
corresponding diagnosties packages (particularly the PDP) could be
maneuvered into favorable positions, wave and particle measurements

unobtainable from rocket experiments were made in and around the beam



environment. The first electron beam experiment performed on the
shuttle was in March of 1982 as part of the STS-3 mission. On this
flight, the PDP was maneuvered using the shuttle's Remote Manipulator
Arm (RMS) while the FPEG, located in the shuttle cargo bay, produced
an electron beam. During beam injections, strong emissions near the
local plésma frequency and possibly in the whistler mode were detected
by the PDP radio receivers [Shawhan et al., 1984]. 1In December of
1983, the shuttle carried the PICPAB (Phenomenon Induced by Charged
Particle Beams) and SEPAC (Space Experiments with Particle Accelera-
tors) investigations into the ionosphere as part of the Spacelab-l
mission. During electron beam injections, the PICPAB radio receivers
detected emissions in the whistler mode, at the plasma frequency and
at the fourth harmonic of the ecyclotron frequency [Beghin et al.,
1984] while the SEPAC radio receivers detected an intense VLF signal
between 0.7 and 10 kHz that varied in intensity depending on the beam
pitch angle [Neubert et al., 1986]. As mentioned previously, in July/
August of 1985, the shuttle again carried the PDP and FPEG into the
ionosphere as part of the Spacelab-2 mission. The PDP was released to
fly around the shuttle and during magnetic conjunction with the shuttle
the FPEG was fired. Besides detecting the whistler-mode radiation,
emissions near the local plasma frequency and intense electrostatic
emissions below 30 kHz were detected by the PDP during beam injections
[Gurnett et al., 1986]. During pulsed electron beam events electromag-
netic waves at the fundamental and harmonics of the pulsing frequency

were also observed [Reeves et al., 1986; Bush et al., 1986].



From the discussion above, it seems evident that whistler—mode
radiation is commonly detected from artifieial electron beams. This
radiation is also produced naturally in the auroral zone in associa-
tion with the field-aligned electron beams that are responsible for
the aurora [Gurnett, 1966] and is usually called auroral hiss. Both
upward and downward propagating auroral hiss has been observed [Mosier
and Gurnett, 1969]. The downward propagating auroral hiss is asso-
ciated with downward moving electron beams with characteristic ener-
gies of a few hundred eV [Gurnett, 1966; Hartz, 1969; Gurnett and
Frank, 1972; Laaspere and Hoffman, 1976]. The upward propagating
auroral hiss often has a V-shaped spectrum called a "saucer" [Smith,
1969; Mosier and Gurnett, 1969; James, 1976] or a "funnel" [Gurmett et
al., 1983]. Upward propagating auroral hiss has been nbserved-in
association with upward moving field-aligned electron beams [Lin et
al., 1984]. The characteristic frequency-time shape of the "saucer"
or "funnel" is a propagation effect that occurs for whistler-mode
waves propagating near the resonance cone.

Although whistler-mode waves and electron beams are closely
related, the exact wave-particle interaction generating the waves is
unknown. It is hoped that the study of the whistler-mode radiation
from the SL-2 electron beam will aid in the understanding of the
processes that create these other artificial and natural beam—
generated whistler-mode emissions.

The specifiec outline of this thesis is as follows. In Chapter II

measurements of the polarization and power of the whistler-mode



radiation from the 5L-2 electron beam are presented. In Chapter III,
the measured power is compared and contrasted to the calculated power
predicted from possible incoherent and coherent wave generation mech-
anisms. By the end of Chapter III, it will be evident that coherent
Cerenkov radiation from electron bunches in the beam is the only
mechanism able to account for the measured power in the whistler mode.
Chapters IV and V invelve the detailed modeling of the electron
bunches responsible for the coherent Cerenkov radiation. Specifi-
cally, an expression for the radiated power from an electron beam is
derived in Chapter IV and the Appendix. 1In Chapter V, the results of
a computer simulation of the SL-2 electron beam are presented, which
includes the modeling of the electron beam distribution. Electron
bunches in the simulated beam resulting from a beam-plasma instability
are clearly evident. The radiated power from this simulated beam will
then be calculated using the derived power expressions and will be
compared to the measured power from the SL-2 electron beam in the

whistler-mode.



CHAPTER II
POLARTIZATION AND POWER OF THE WHISTLER-MODE

RADIATION FROM THE SL-2 ELECTRON BEAM

In this section, measurements of the electric field polarization
and radiated power of the whistler-mode emission from the 1 keV - 50 mA
SL-2 electron beam are presented. As will be shown, both measured
quantities are important in determining the wave generation mechanism

of the whistler-mode emission.

A. Electric Field Polarization

The whistler mode has a polarization that depends on the wave
frequency, f, the wave normal angle, 8, the cyclotron frequency, f.,
and the plasma frequency, f,. Using cold plasma theory [stix, 1962],
the electric-field and index of refraction vectors can be calculated as
a Funetion of these parameters. The variation of the index of refrac-
tion as a function of 8 is often presented as an index of refraction
surface n(8), which defines the locus of points the index of refraction
vectors make as a function of the wave normal angle for constant £, EP
and f.. Figure 2 shows a typical index of refraction surface for the
whistler mode. At a limiting wave normal angle, known as the resonance
cone angle, PReg, the index of refraction goes to infinity. This angle
is defined by tan®@geg = -P/S, where P = | - Epszz and § =

Jre= fpzfifz = fcz}. As the wave normal approaches the resonance cone,



the electric field E becomes linearly polarized with E parallel to n.
In this limit the electric field is quasi-electrostatic and the group
velocity, ;é, is perpendicular to E and n (see Figure 2).

In a previous paper [Gurnett et al., 1986], the funnel-shaped
frequency versus time pattern of the radiation from the SL-2 electron
beam was explained as a frequency dependent propagation effect for
whistler-mode emissions propagating near the resonance cone. As the
wave frequency increases, the resonance cone angle, fpeg, decreases
and the ray path direction, ;%, becomes increasingly oblique to the
magnetic field, approaching 90° as the frequency approaches the elec-
tron eyclotron frequency. As the PDP approaches the beam, emissions
near the gyrofrequency are detected first, since their ray paths are
almost perpendicular to the beam. Lower and lower frequencies are
then detected as the distance between the PDP and beam decreases.
This frequency dependent wave propagation effect causes the Funnel-
shaped emission pattern observed in Figure 1 and provides strong evi-
dence that the radiation is propagating near the resonance cone.

In order to provide further confirmation that the radiation from
the 5L-2 electron beam is propagating near the resonance cone, an
additional test was performed. This test compares model electric-
field directions in the PDP spin plane to their actual directions as
measured by the PDP plasma wave instrument. To perform this test a
computer program was developed that calculates the angle, 4, between
the projection of a model electric field onto the spin plane and a

fixed reference direction. The fixed reference direction selected was



the spin plane projection of the spacecraft-sun vector. To compute &,
the group velocity was assumed to be directed from a point on the beam
toward the PDP with the electric field vector, E, at an angle 8peg
relative to the beam. This field geometry is the expected configura-—
tion for an upward propagating whistler-mode wave near the resonance
cone. Figure 3 shows the corresponding geometry of E} ?E and k.

The electric-field directions in the spin plane calculated using
the model described above are compared to the measured electric-field
directions found from spin modulation maximums in the receiver data.
The spin modulation maximums occur when the PDP electric antennas are
aligned with the measured electric field in the spin plane, thus
allowing a direct determination of this measured electric field direc-
tion. Figure 4 shows the results of this comparison at four frequen-
cies: 562, 311, 178, and 100 kHz. This figure shows the phase angle,
%, between the projected electric field and the sun vector as a funec—
tion of time. The dots represent the modeled electric-field direc-
tions computed assuming a resonance cone propagation scheme while the
X's represent the measured electric-field directions. The close
agreement between the computed and measured electric field directions
provides strong confirmation that the waves are propagating near the
resonance cone and in the beam direction (i.e., E;;E > 0), as

indiecated in Figure 3.

B. Emitted Power

In this section the total power radiated from the beam in the

whistler mode is estimated. By comparing the radiated power to the

10
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total power in the beam, the efficiency of the wave—beam interaction
can be determined and compared with various generation mechanisms.

The power emitted from the beam in the whistler mode is obtained
by integrating the Poynting flux over a surface surrounding the beam.
An inherent difficulty with this ecalculation is the determination of
the phase and magnitude of the electric and magnetic fields in the
Poynting flux expression, S = ExH. Since three axis measurements are
not available and since phase measurements were not made, the Poynting
vector cannot be determined directly. The situation is further
complicated by the fact that the emission is propagating near the
resonance cone and is quasi-electrostatic. Consequently, the ratio of
the electromagnetic to electrostatic components of the wave electric
field is a sensitive function of the wave normal angle. Therefore, to
compute the wave normal angle it is assumed that the radiation is
produced by the Landau resonance, i.e., %ﬁ~= %T = Vy. Since the beam
velocity is known, this assumption gives a well-defined wvalue for the
wave normal direction. The fact that the radiation is propagating in
the same direction as the beam ﬂf;;b > 0) provides a strong indication
that the Landau resonance is involved. For example, the s = -l cyelo—
tron resonance produces radiation propagating in the opposite direc-
tion of the beam and is therefore completely ruled out, since the
radiation is observed to be propagating in the direction of the beam.
Also, as will be discussed later, the Landau resonance gives the best

agreement with the measured electric to magnetic field ratios.



To compute the Poynting vector, g, the electrostatic and electro-
magnetic component of the whistler-mode electric field must be deter—
mined. Since the PDP did not measure the relative phase between E and
H, these important components of E cannot be directly calculated.
However, by using the assumption that the waves are generated via a
Landau resonance, T and E can be calculated exactly using cold plasma
theory. Consider, first, the whistler-mode wave electric field.

Since the emission is propagating near the resonance cone, E lies
almost entirely in the plane defined by'; and the geomagnetic field
(see Figure 3). The electrostatic and electromagnetic components of E
are then given by E, cos A8 and E, sin AB, respectively, where A6 is
the angle between E and n, and E; is amplitude of the total electric
field. The angle A8 is determined by the Landau resonance condition
and cold plasma theory. The Landau resonance condition specifies the

component of n parallel to the geomagnetic field, i.e.,
ny =ncos B = cfvy . (2-1)

where ¢ is the speed of light. For a 1l keV electron beam moving par-
allel to the magnetic field nj; is approximately 15.9. A program was
written that solves Equation (1-20) of Stix [1962] for the magnitude
and directions of n and E. Using this pragram,': and A8 at a parti-
cular wave frequency can be calculated by constraining values of n(8)
using (2-1). Since A8 is now determined, the electrostatic and
electromagnetic components of E can be calculated. The calculated 48

values are very small, typically ranging from .06° to 1.1° from 31.1

12



kHz to 562 kHz, indicating that the wave is nearly electrostatie. It

is easy to show that the magnitude of the Poynting vector is given by

n E2 E
5] = —5— {u—z-]”2 (A2 + B2)V/2 | (2-2)

where A = 1 - cos?A8 and B = sin A® cos A8. In the derivation of
Equation 2 Faraday's law was used to eliminate the magnetic field in
the E x H term. Note, also, that as 8 approaches the resonance cone
angle, n and E become parallel and r§| goes to zero. This behavior
near BReg 1s similar to an expression derived by Mosier and Gurnett
[1971] in their paper addressing Poynting flux measurements of VLF
hiss emissions.

Figure 5 shows, pictorially, the PDP trajectory during the
1 keV - 50 mA electron beam event. As can be seen, near the magnetic
conjunction, the PDP trajectory was nearly perpendicular to the beam,
and, at closest approach, passed within about 3 meters of the beam at
a distance of about 200 meters along the field line from the shuttle.
To compute the total radiated power, the Poynting flux is integrated
over an imaginary surface perpendicular to the beam that includes the
FDP trajectory. Assuming that the sampled intensities along this
trajectory are constant around an annular ring of the area, dA =
2rRdAR, centered on the beam, the radiated power from the beam segment

can be obtained by evaluating the integral P = ISHEHRdR, where Sy is

the field-aligned component of the Poynting wvector and R is the

13
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perpendicular distance from the beam to the PDP. Note that the evalua-
tion of this integral will yield two values for the radiated power:
one value from the inbound pass where the limits of integration
extend from R = = to R 2 0 and one value from the outbound pass where
the limits of integration now extend from R 2 0 to R = -=. Figure 6
shows the average power spectral density from these two passes as a
function of wave frequency. The error bars in the figure represent
the standard deviations of the power values. Note that the power
spectral density, dP/df, is on the order of 10~2 W/Hz in the frequency
range extending from 30 kHz to 1 MH=z. ﬁdding-g% over the 30 kHz to
1 MHz frequency range, the total emitted power in the 200-meter bheam
segment from the shuttle to the PDP is found to be P = 1.6 mW. If the
power were emitted uniformly along the beam, the radiated power per
unit length, dP/df, would be approximately 1.6 mW/200 m = 8x10% W/m.
Since the total power of the beam was 50 W, the beam converted approx-
imately 1.6 mW/50 W = 3.2x10"5 of its power to whistler-mode radiation
in the first 200 meters. As a rough indication of the radiation effi-
ciency, if the beam continued to radiate at this level and this radia-
tion was the only beam energy dissipation mechanism, the beam would
only propagate about 6000 km before converting all of the beam energy
to radiation.

The linear emissivity of the whistler-mode radiation, dP/dfd%,
from different locations along the beam can also be calculated. To
caleulate the linear emissivity, a knowledge of a signal's exact

source location from the beam is required; however, by using the ray
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path, the source of the signal at a particular point along the PDP
trajectory can be located. The power radiated from an infinitesimal
beam radiation source, d&, 1s P = f S| 2nRd%, where 5] is the perpen—
dicular component of the Poynting vector measured at the perpendicular
distance R from the beam and corresponds to the Poynting flux emitted
from a cylinder of radius, R, and length, di, surrounding the beam.
The linear emissivity from this source, dP/dfdf, is then obtained by
using the differential form of the power integral. The calculated
linear emissivity of the whistler-mode waves is shown in Figure 7.
Note that the emissivity drops by a facter of ten from 100 to 200
meters along the beam. This decrease in emissivity indicates tﬁat the
efficiency of whistler-mode generation decreases with increasing
distance along the beam and that the generation mechanism is capable
of dynamic changes in tens of meters. If the emissivity continues to
drop at the rate observed between 100 to 200 meters, the radiation
would be undetectable by the PDP at source distances more than about 1
km from the shuttle. This result may explain why DE-1, which was mag-
netically connected to the shuttle during a gun firing on the S5T5-3
mission, did not see beam—generated whistler-mode radiation in the
vicinity of the streaming electrons [Inan et al., 1984]. From the SL-
2 measurements, it appears that strong whistler-mode emissions are
probably generated only in close proximity to the source of the beam.
As mentioned earlier, the electric and magnetic field measure-
ments also provide direct evidence that the whistler-mode waves were

generated via a Landau resonance process. This evidence comes from a
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comparison of computed and measured c¢B/E ratios. Assuming a specific
resonance condition and using the solution of Equation (1-20) of Stix
[1962], a unique value for n and A8 can be computed. Faraday's law

can then be used to obtain the relationship

M xE=cB (2-3)

where E is the electric component and B is the magnetic component of
the whistler-mode waves. For the assumed field geometry, Equation 3

can be rewritten as

n Ey sin AB = cB, y

or

cB,
=-— = n s5in A8 . (2-4)

Using Equation (2-4), n sin AP is computed for various resonance condi-
tions and compared with the measured ¢B/E ratic. The spectrum analyzer
used with the PDP search coil can only provide measurements up to 178
kHz; therefore, the magnetic to electric field ratio can only be
obtained in the 56 kHz, 100 kHz, and 178 kHz frequency channels. Also,
the measured values of B at high frequencies using the search coil are
highly uncertain, due to inaccuracies in the calibration of the instru-—

ment. The preflight calibration was performed by placing a calibratien



17

coil in the search coil and surrounding the system in a p-metal can. A
problem arises at high frequencies (>10 kHz), where frequency dependent
capacitances and inductances affect the current and the expected value
of B from the calibration coils. Unfortunately, post—flight calibra-
tions under more ideal condition (specifically, without the p-metal
can) have failed to reproduce the preflight calibrations. This sug-
gests that the high frequency gain of the search coil may have shifted
during the flight. Our current best estimates are that B (and ¢B/E)
are accurate only to within a factor of 2 — 4 at high frequencies. The
range of measured cB/E values lies between 1.3 and 15.3. Assuming a
Landau resonance, n sin A8 is computed to be .54, .52, and .54 for 56
kHz, 100 kHz, and 178 kHz, respectively. WNote that these values lie
just outside the range of measured c¢B/E values, and Fall in the range
when considering the factor of 2 - 4 uncertainty in the calibrations.
For an s = +] cyclotron resonance, however, n sin AB is computed to be
between .05 to .08 for 56 kHz, 100 kHz, and 178 kHz. These values are
about a Factor of 20 smaller than the lowest measured cB/E wvalue.
Similar computed values are obtained for the s = -1 cyclotron reso-
nance. These comparisons show that the measured cB/E ratio is closest

to those expected for a Landau resonance.
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CHAPTER III

POSSIBLE WHISTLER-MODE WAVE GENERATION MECHANISMS

From the power measurements alone it is not clear whether the beam-
generated whistler-mode radiation detected by the PDP during the SL-2
mission results from a coherent or incoherent generation process. A
coherent mechanism involves large numbers of particles acting together
to generate the emitted waves. The total power from a coherent source
goes as N2, where N is the number of particles in coherence. Common
coherent sources are plasma instabilities, lasers and radio antennas.
Incoherent mechanisms involve particles that are radiating independent-
ly. The power from the individual radiators must be added to get the
total power emitted; thus the total power is proportional to N, the
number of radiators. A common incoherent source is an incandescent
light bulb. 1In this chapter possible incoherent and coherent mechanisms

for generating whistler-mode radiation are described.

A. Incoherent Generation Mechanisms

One possible incoherent mechanism involves incoherent Cerenkov rad-
jation from beam electrons. Cerenkov radiation is generated by charged
particles moving with speeds greater than the phase speed of the wave in
the medium. The whistler-mode waves from the SL-2 electron beam are
propagating near the resonance cone with large indices of refraction,

typically n ~ 30 to 500. The phase speed of the wave is therefore much



less than the speed of a 1 keV electron. Since the beam electrons are
moving faster thaﬁ the phase speed of the whistler mode, Cerenkov
radiation should be produced.

The measured whistler-mode power from the beam is next compared
to the calculated power from Cerenkov radiation, assuming that the
beam electrons are incoherent radiators. This calculation is similar
to those performed by Jorgenson [1968] and Tayler and Shawhan [1973],
who both calculated the power from this process and compared it to the
radiated powers from VLF hiss. Mansfield [1967] derived an equation
that gives the power spectral density radiated from a single electron
moving through an ambient ionized gas with a speed greater than the
wave phase speed. For an incoherent mechanism, the total power

radiated from the beam is the power radiated from each electron L%%} ’
e

added up over all the electrons in a given beam volume, Nyt

(=) = N GEE} . Using Mansfield's formula, the radiated power
df total vidf 8 2 e

e
from each beam electron can be calculated and is shown in Figure 8.
In obtaining this result, it is assumed that the radiation is produced
via a Landau resonance. Tt is also assumed, for this ecalculation,
that the pitch angle of the electrons iIs 10°. The actual pitech angles
varied from 0° to 20°; however, the results are relatively insensitive
to pitch angles in this range. From Figure 8 it can be seen that the
most intense radiation occurs between the electron eyclotron frequency
and the lower hybrid frequeney, fyyr. Outside this range the power

drops by a factor of 10%. Note that this frequency range corresponds

rather well to the frequency range of the radiation observed by the
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FDPs Multiplying the power from each electron by the number of elec-

trons in the first 200 meter segment of the beam (3 x 10!2 particles)

dp
ields (==)
d df "toral

These power spectral densities are much lower than the measured power

~ 10718 W/Hz in the frequency range from E. to Erpgm-

spectral densities, by about a factor of 107 (compare with Figure 6,
where dP/df ~ 10~° W/Hz). Therefu;e, an incoherent process cannot
account for the measured wave powers. Some coherent wave process must
be involved. In Taylor and Shawhan's [1973] analyses of the generation
of VLF hiss emissions by auroral electron beams, the caleculated powers

for the incoherent Cerenkov process were found to be a factor of 102 -

103 lower than those measured, again indicating a coherent process.

B. Coherent Generation Mechanisms

As concluded in the previous section, some coherent process must
be involved in the whistler-mode wave generation from the SL-2 electrom
beam. Coherent processes can be divided into two classes: direct and
indirect. Direct mechanisms involve the direct conversion of energy
from an unstable particle distribution to electromagnetic radiation:
whereas indirect mechanisms involve the intermediate generation of one
or more electrostatic modes which are coupled to the escaping electro-
magnetic radiation. This section will discuss possible direct and
indirect mechanisms that may explain the whistler-mode radiation.

Since an unstable electron distribution is present in the beam
the escaping electromagnetic radiation may result from direct conver-

sion of the beam energy to electromagnetic radiation. Such a mechanism



has been proposed by Maggs [1976] for the generation of auroral hiss.
In his model, incoherent Cerenkov radiation produced by an auroral
electron beam is directly amplified via a whistler-mode plasma insta-
bility within the beam. It seems reasonable that this wave generation
mechanism could be applied to the whistler-mode waves emitted from the
S5L-2 electron beam; however, a problem arises in doing so. Unlike
auroral beams, the path length for wave growth in the SL-2 beam is
very short, only two to three electron ecyclotron radii (6 to 9
meters). Using the Landau resonance condition and the Fact that the
emission is propagating near the resonance cone, the wavelength of the

whistler-mode radiation is given by

Vb
= g-cos B o, (3-1)

A
which, for the nominal parameters has a value of about 20 meters.
This wavelength is greater than the path length, which completely
invalidates any mechanism involving exponential growth. Even if that
were not the case, for typical whistler-mode group velocities of 107

m/sec, the amount of time the wave spends in the beam is so short,

108

[1H]

only about 1078 see, that unreasonably high growth rates (y > We
sec™!) would be required to generate the radiation. HNo whistler-mode
instability is known that can produce such large growth rates From
realistic electron distribution functions. These same conclusions

were also reached by Jones and Kellogg [1973] in their paper



addressing the growth rates of whistler-mode radiation from
artificially-created electron beams.

Mechanisms involving the intermediate generation of electrestatic
waves in the beam are now consldered. Any density perturbation or
bunch created by an electrostatic wave in the beam is capable of
emitting coherent Cerenkov radiation. The radiated power from a
bunch will have a frequency spectrum similar to that of a single
radiating electron; however, the wave power will be much greater since
the emitted power goes as N2, where W is the number of electrons in a
bunch. Coherent Cerenkov radiation from a bunched beam has been
considered previously by Bell [1968].

Beam-plasma instabilities are known to be capable of creating
intense electrostatic waves and density perturbations in the beam. An
estimate of the number of coherently bunched electrons required to
account for the observed whistler-mode radiation is presented. A
first—order expression for the total power emitted from the electron
bunches in the beam is E%%)TDT = fg%}e (aN)2a, where (%%)E is the
power radiated by each electron, AN is the typical number of electrons

in a bunch, and a is the number of bunches in the 200-meter segment of

the beam. Consequently,

. (3-2)
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Beam—plasma instabilities are known to create an electrostatic wave
near the local electron plasma frequency (3 MHz). Such an emission
is, in fact, observed near 3 MHz [see Gurnett et al., 1986]. The

corresponding wavelength of this emission is Fhffp = | meters, which

is assumed to be the approximate length of each bunch. This wave-

length can then be used to calculate a, the number of bunches in the

first 200 meters of the beam. This number is o = 29. The radiated

power from the 200-meter beam segment, (%%} is about 1079 W/Hz.
t

dP
@,

otal’
is about 1029 W/Hz. Using (3-2), it is

From Mansfield,
calculated that each bunch must contain about AN = 2 x 10° electrons
in order to account for the observed radiated power.

An estimate can now be made of the required electric field
strength of the electrostatic wave in the beam that forms the bunches.

Assuming that the beam diameter 1is about 2 cyclotron radii, the elee-

tron number density in the bunch can be estimated using the formula:

An = i {3—3)
wrgﬂL

where AL is the bunch length and r. is the cyclotron radius (2 to 3
meters). The required number density is found to be about An = 1 x
107 electrons/m3. Again assuming a beam diameter of 2 r,, the average
beam density is n, = 1 x 109 electron/m3. WNote that the fractional
density perturbation in the beam An/ng is only about 0.Nl. Conse-

quently, a relatively small density perturbation can account for the
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measured whistler-mode power. Poisson's equation can be used to
determine the magnitude of the self-consistent electric field needed

to generate this density perturbation

AE _ eAn (3-4)

From Equation (3-4), an electric field on the order of 1-2 V/m is
needed to ereate the required coherence in the beam electrons.
Although the PDP did not fly directly through the beam during
free Elight, when the PDP was on the Remote Manipulater Arm, it did
provide electrie field measurements in the beam. During these times,
an intense field-aligned electric-field signal near f,. was measured
with amplitudes greater than 0.3 V/m, sufficiently large to saturate
the receiver. This value is within a factor of 10 of the required
amplitudes needed for radiative coherence of the beam electrons. The
good agreement between the calculated and measured electrostatic field
strengths strongly suggests that electron bunches generated by a beam—
plasma instability can account for the observed whistler-mode power.
In the analysis above, it is assumed that the electron beam has
fully expanded to a diameter of 2 r. after being injected. This
assumption, however, may not actually be valid near the generator since
the beam is still expanding after being ejected from the small genera-
tor oriface. As will be shown in Chapter V, this expansion can effect
beam structure and should be considered in a detailed power calcula-

tion.
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In the rest of this thesis, a detailed model of the coherent
Cerenkov radiation mechanism described above is presented. A computer
gsimulation of the beam is performed, and the radiated power from this
beam is calculated and compared to the measured power from the SL-=2

beam in the whistler mode.
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EMITTED POWER VIA CERENKOV RADIATION PROCESSES

In this chapter an expression will be derived for the power emit-

ted from an electron beam in a plasma by the Cerenkov radiation

process. This expression can be used with known electron beam dis-

tributions to compute the radiated power from a beam, and can be

applied to the SL-2 electron beam to determine its radiated power.

The derivation is similar to that of Mansfield's [1967], who

derived an expression for the radiated power from a single test par-—

ticle in a plasma medium. His approach was

to use the Fourier trans-

forms of the source current and electric field to obtain the radiated

power; a method that differed from Liemohn [1965], who derived a

similar power EQpressiun using the solution
test particle's radiation field. Mansfield
was 'excellent quantitative and qualitative
expression and Liemohn's.

Either of these expressions for single
used to calculate the incoherently-radiated
beam. 1In performing this calculation it is

in the beam radiates independently from all

of the Hamiltonian of the
[1967] claimed that there

agreement' between his

particle radiation can be
power from an electron
assumed that each electron

others. The radiated

power from each individual electron in a given volume of the beam is

then added to obtain the total radiated power.
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In the previous section, a calculation of the incoherently-
radiated power from the SL-2 electrom beam was performed. Tt was
found that this radiation mechanism could not account for the measured
whistler-mode wave power, and concluded that coherent ef fects among
the beam electrons must be included in the caleulation.

Harker and Banks [1983] derived an expression for the power
radiated from a pulsed electron beam in a plasma which included the
coherent effects between the radiating electrons in the beam. They,
like Mansfield, used the Fourier transforms of the pulsed current
source and electric field to obtain the radiated power. 1In their
derivation, it was assumed that all beam electrons travelled with the
same velocity, V, in pulses of length, %, with a distance, d, sepa-
rating each pulse. Compared to the incoherently-radiated power from a
beam, the inclusion of coherent effects between radiating beam—
electrons in a pulse leads to much higher radiated powers; however,
the derived expression for radiated power did not include effects from
bunches that occur due to instabilities in the beam.

1In this section, a general expression will be derived for the
radiated power from an electron beam that includes the coherent
radiation from particle bunches. The derived expression allows one Lo
caleulate the radiated power from N field-aligned particles with
arbitrary veloeity and position. 1If a distribution of beam particles
is known, the velocity and position of these particles can be used

to compute the radiated power.
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A. Derivations

There will be two expressions derived in this section: first,
the power radiated from a single test particle in a plasma medium will
be obtained. Except for a simplification, this derivation will follow
the identical steps as Mansfield [1967]. Second, this derivation will
be generalized to include the radiated power from N particles of
arbitrary velocity and position.

In deriving these expressions, it is assumed that all particles
are moving parallel to a static magnetic field in a plasma. This
choice of particle trajectory will simplify the integrations involved
in the derivations. It will be shown that these field-aligned par-
ticle trajectories only allow the s = 0 Landau resonance interaction
between beam particles and waves. Thia-is not a problem, however,
since it is believed that the detected whistler-mode signal from the
SL-2 electron beam was generated by the Landau interaction. It should
be noted that the SL-2 electron beam was not actually field aligned,
but varied in pitch angle from 0° to 20°; however, this variation
causes only a 6% change in the beam electron's parallel velocity and,
as mentioned previously, is not enough variation to significantly
alter the radiated power from a 1 keV beam electron. Cyclotron motion
of the electrons can, however, alter the radiative coherence of the
beam. As will be shown, coherent effects between beam electromns is a
function of their relative position. 1If a beam has a relatively
large pitch angle, the beam electrons will deviate from their field-

aligned trajectories which alter their relative position and
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coherence; however, the S5L-2 beam had, at most, a pitch angle of 20°
and during most of the encounter was nearly field aligned. Conse-
quently, the calculated power assuming a field-aligned beam trajectory
should not be significantly different from that of the real SL-2 beam
with small variations in pitch angle.

Some further assumptions will be made in deriving the two power
expressions in this section. These assumptions are identical to those
made by Mansfield [1967] and they are:

(1) That the plasma medium is represented by a homogeneous,
cold, collisionless plasma in a static magnetic field, Bg.

(2) That the presence of the test particle(s) may be neglected
in the deseription of the medium.

(3) That the radiated waves from the test particle(s) do not
significantly alter the medium and have magnetic fields much weaker
than E;.

(4) That the magnetic permability is equal to the free space

value.

1. Radiated Power From a Single Test Charge
In A Plasma Medium
An expression is now be derived for the radiated power from a
single test charge in a plasma medium. The steps taken in this
derivation are identical to Mansfield's [1967], except for the
simplification of making the particle trajectories field aligned.

The first step is to write Ampere’'s and Faraday's Laws for the

Fourier transforms of E(T,t) and R(T,t):
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where jﬁfﬁ,m] is the Fourier transform of the external source current

and % is the dielectric tensor for the plasma medium. Substituting

ﬁtﬁlm} from (4-2) into (4-1) yields the homogeneous equation:

o o 17 (k,uw)
nxnx E(k,w) + KeB(K,w) = —1—— (4-3)

MEG

is the index of refraction. This equation can be

T-E(k,0) = —— . (4=4)

A static magnetic field, B,, is present in the plasma medium and is
assumed to lie along the z-axis. Radiation from a field-aligned test
particle will be azimuthally symmetric; however, for simplicity, it

is assumed that k is entirely in the y-z plane at an angle 8 relative
to the z-axis. This coordinate system can be rotated to analyze radi-
ation from any specific aximuth angle, thus these assumptions can be
made without any loss of generality. With these assumptions, T can be

expressed as:
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and f, f.. and fpe are the wave frequency, local cyclotron frequency

and local plasma frequency, respectively.
The electric field, E{r,t), is obtained by taking the inverse

Fourier transform of E(k,uw):

ET,0) = [ T'l-ﬁéii,m)ei{“t "E;?}uz-%i . (4-86)
o

For & single test partiecle in the medium, the source currant is

expressed as:



J (r =qV 6(r-T 4-7
Jq[r,t} q ?q s(r rq{t}} (4-7)

where for field-aligned trajectories, Uq is

V =V z (4-8)
and
r = (rn + ?nt)z . (4-9)

The variable r, is defined as the particle's initial position. The

Fourier transform of the source current is:

= = a1 = = oy AETT) = o o i(kerg-ut)
Jq(k,m'} ek _”' Jqfr,t}ﬂ drdt = 2" I e q dt .

(4-10)

As mentioned previously, k is assumed to lie in the y-z plane, at an

angle 6 relative to the z-axis, which allows K to be expressed as:

k=Vksin® +2zkcos B (4-11)

and

nw cos @

KT =———2 ¢ + nwcos 9 Bt (4-12)
q c 0
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vD Thish X
where B = 2 and v has been substituted for k. The transform of the

source current is then:

- 29V, E%E cos 8 r T ol(nu cos 8 Bw)t,y,

Tq(k,u:.} — ‘W e
(4-13)

29V, im so5 9t

o © o g
oo e &(nw cos B B—w)

Ei(mu cos B B-w)t

where T dt = 276{nw cos 8 B-w) is used to obtain

—@

(4-13). Substituting (4-13) into Equation (4-6) yields:

qiV inw cos 8 ¢

E(r,t) = figjgg— [f (T'l-g} e T ° G(nw cos B B-w)
0

(4=14)
Ei(mt - k-r}di dw
w
for the electric field.
The radiated power from this test particle is
=q E(r_,t)-V (t
P(t) = q (rq, ) q( )
(4-15)

_

23y2 —i
i Lne 1(wt-K-Tq) - do
e §(nw cos 0 B=-uw)adk —

= Trye I (aerlaz)e €00 O Fo
0
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Substituting (4-12) for iﬁ?& in the exponential term of (4-15) yields:

2 4y2
q=1vy

P(t) =-{2—“53'%H (3+T-1+3)6(nu cos 8 g-yg)elfu—no cos 8 mtdﬁ% i

(4-16)

Note that the dependence of the power on rg, the initial position of
the particle, cancels out of the expression. The element dk can be

reexpressed as

3
d'E=n2%3-dnsinEdBd1: v

Since there is no ¢ dependence in (4-16), the integration over ¢
yields a 2n. The integration over 8 is more complicated since cos 8
is in both the delta function and exponential. An integral of the

form

f(xa]
I = £(x) 6(Ax+B)dx = arin

now has to be evaluated. For (2-16), A = |nw@|, B = w, and X, "%E‘

Note, in the integration, that a nonzero value is obtained only if

o =
Ccos Eo ~=E (4-17)
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is satisfied. This is the Landau resonance condition. The expression

for radiated power now becomes:

-qzivg . .
P(t) =’TE§T?E;EIE [ (zeT"1+2) |n||w]|dnde . (4-18)

From Mansfield [1967], it is found that

S . 2 L - 2 2
el - e - gn + (n Eqn Jeos 8,

(5e273s8) = e (aZ — np)(a? = 1) SR

where 8, is the angle that satisfies the Landau resonance condition and
2 2
ny 2= [-B£(B2Z - 4G51}1£E]f2€1- The quantity B = E%ﬂ} {53—51} * e% -
8]
2 - = (Sy2(e2 - g2 — + B oL 4B
et - €4 and C (vn} (El €5 EIEB} 53(51 52} where €10 By and
€y are those previously defined. If the numerator of (4-19) is defined

as T33(n), the power expression can now be written as:

2 —
~qFAv @ Tyq(n) |n|dn
7)2Be c’e; o (nZ-n$)(n?-n%)

P(t) = 43 |w|dw . (4-20)

Since the real part of the power is needed, the imaginary part of the
quantity in brackets in (4-20) has to be caleculated. To obtain this

imaginary part, the Plemelj formula was used with the result that
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o T..(n) |n|dn
33 . ni =
o (n®-nj)(n*-nj5) - 2(n3 ) [Tjjinzi T33fn1}]

5 (4-21)
_ ai _iy ke
= TnE2Y ki (=1)"Tg5(m)
Equation (4-20) now becomes
P(t) = T 92 Juo] du {vG} % {-I}kT (n,) (4-22)
2z BﬂEﬂElfu%—n%) el k=1 I3k -

This expression for the radiated power can be compared to Equa-
tion 32 of Mansfield [1967]. Assuming that the particle's perpendic-
ular velocity is zero and that wave generation is via the s = 0 Landau
resonance, then out of the six terms in brackets in Mansfield's Equa-
tion 32, only one remains. In the limit that the particle's perpen-
dicular velocity goes to zero, the Bessel function, Jo(L), in
Mansfield's Equation 32 goes to one. Consequently, Equation (4-22) is
identical to Mansfield's Equation 32 when considering the radiated

power from a field-aligned test particle.

2. Radiated Power From N Particles in a Plasma Medium
An expression for the radiated power from N field-aligned test
particles is now derived. This derivation is similar to the single
particle case derived previously; however, coherence effects between

these N radiators will be included.



The source current for the N test particles can be written as:

2 s - N s =
J (r,t) = iilq v, (e)s(r - £, (£)) (4-23)

with

[+ 1]

(4-24)

|
=

?i(tj T Yo

and

T,(e) = (ry, + Fiutii : (4=25)

being the velocity and position of the ith particle. Like the single
particle case, each of the N particles are field-aligned and are
initially located at point rj, along the z-axis. Using (4-12), T:'-?i

can be expressed as

T L =
ker - cos 8 L + nw cos @ Eit (4=26)

Jatm Vio
where — has been substituted for k and B = ——- The Fourier

transform of the source current is
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i {E"'—I"—mt)d—r'dt

IRy I |  di
Jq{k,m} ¢ I] Jq{r,t}e

- Vi i(kery-ut) _

1—1

Substituting (4-26) into (4-27) and using the identity

T Ei{nm cos B Biﬂ”}tdt = 2r6(nw cos B PBy{—w) yields:

g *104(nw cos 8 Biﬂm} . {4-28)

The electric field can now be solved by substituting (4-28) into

(4-6):
= N q¢ v —t—cns 6 r
E(r,t) = TEEEEEH /] (T71+3) 10 §(nw cos @ B ~w)
(4-29)

ei{ut—k-?)di duw

The radiated power from these particles is
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N == =
P(t) = q 151 E{rj,t)-vj{t}

“ 7__5_1_ [[ (z+T-1+2) ETﬂim °8 8 Tio §(nw cos 8 8,-w)
j:l]_ iu 2“) E z . i

(4-30)
Ei{mt_k'rj}df.ﬂﬂ .
The element dk can be written as:
— s wd
dk = n e dn sin 8 d& d¢
and
%T, == cos B r, + nwcos 8 B,t
j e je b
Vio
where Bj - The radiated power, after performing the integrationm
over &, then becomes:
j i W E%Eﬂus B(rig=rjo)
Plt - 'IT_'|2_ (o] o]
(t) nl i 1 {Zn} £oC /I Je
(4-31)

llu—nuw cos 8 Byt se ) og g B ~w)n?w?dn sin Bd8du
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Like the single particle case, the evaluation of the integral

E
I= [ £(x) 6ChxtB) = —{X)

is needed to complete the integration over 8. TFor (4-31), A = |nuw Eif,

B = w and x, =-l——. This integration is nonzero only for

n By

cos @ =1 {(4=32)
o

which is the Landau resonance condition for the ith particle. Equation

{(4-31) can now be expressed as:

2
N N eV, ¥ W o dnw _
P(e) =~ F o i“c-g [[ (3+T-1.3)e T 008 Big(rio=rjo)

(4-33)
]
s |
Eim{l Bi}t In| |w| dn dw .
The quantity (E-E‘l-a) is, again,
. " Taq(n)
(3+7-1.3) = 2 (4-34)

El(n%—nzjfng-nzj
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where T33(n) is the numerator of (4-19) and n,2 = 1,2 (Bi}. Equation

(4-33) is reexpressed as

B
N N q2i V1oV 4o & T33(n)|n|einﬂdn tw(1- =1)¢
P(t} - j=1 i=1 {2“)25 EH'B E, 3 (nz_n%}(nz_n%)le |m|dm
(4-35)
where A = 2 cos E {r -r, ). Since the real part of the power is
[ io j

desired, the imaginary part of the quantity in brackets must be calcu-
lated. In this evaluation, only the real part of the exponential, einﬁ,
is considered since only the relative phase of the electron radiators is

needed. Using the Plemelj formula, the imaginary part of the integral

is

T33{n}|n|einﬁdn 11
o (nz—nﬁjinz-ng} 2(nZ an} k=1

9
g, (- -k T, {nk)ei“kA : (4=36)

Substituting (4-36) for the bracketed expression in (4-35) yields the

expression for the radiated power from N particles:

._.1_

_ 78 N a2)ydw iw(1-
B(e) -i j£1 151 Bre e, (nE[Bi)-n (8) "lI}E

(4-37)

2 k i0' 10 {0
£ (~1)kT
X kulf ) 33{nk{Bi)}e

The radiated power is reexpressed as
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N q2|u|d 1 Yoy 2 k
& qc |w|dw i
R(t) = T L e oy =) G [F, D Ty (8,0
N N g2 v
q?|uwldw 1 [+]
+—Z 151 jii 8m e g [n%(ﬂi} = ﬁ?tﬂi)] [_%?]
(4-38)
w1 -2 3 nF, (8.9
e B, k=l 33 kP
(8,)
eiEEE“E‘N cos Bjo(rig = rjo) .

In this expression, the first—term represents the incoherently radiated
power from the W test particles while the second-term represents the
additional power from coherent effects between the N particles. HNote
these coherent effects depend on a particle's velocity and position
relative to all other particles. -

The time-averaged power is defined as

- 1 I
P —ﬁ--:f; P(t)dt 2

Averaging (4-37) over time yields the expression:

g ¥ q? |w|dw 1

L_‘a

P =

7y o)
| Bt (4-39)

(By)
2 K iEEE—i— W Cos Eiu{rio rjn]
k£1 (-1) T33(nk(51}} B

sin x
x
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where x = w T (1 - Ejfﬂi]. Note that if By = Bj (Vio = ng}, then
sin x/x + 1 and the radiation coming from particles i and j can be
coherent, depending only on the particle's relative position. If a
distribution of particles exist with Bj # B3 then the power averaged
over very long periods will be nearly equal to the incoherently

radiated power from the particles. This result is obtained because

%EE siz X = fFor Bi # By, allowing only the terms that describe the

incoherently radiated power to remain in (4-39). Note, from (4-39),
that if all particles were moving at the same velocity and each had the
same initial position, the exponential terms would be unity and the
radiated power would be P = N2P;, where P} is te radiated power from a
single test charge.

As an example, the radiated power from two test particles will be

written from (4=39):

—~ v
5P = q?[wldm 1 lo 2 ask
F =% e, | WED -RGB Z il TP TaalnEy)
1 Voo 2
¥ IR, (B, c kﬁl{'” Ty3(n (By))
Vy_  sin x; 2
+ o 1 E DM (s,)

1
(ngfaz}-niwg}} c X 33 kM2
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inktazlm (4=40)
x e € Cos8 820(r2o-r1o)
1 vZG sin Xy 2

k
g ; I (-1
(ﬂé{ﬂlj—ﬁfiﬂl}} o< xz k=1{ ) 33{nk{51}}

—_—

1nk{32}m
x e € —cos B1a(rjs = r2q)

where %) = w T (1 - B1/82) and x9 =w T (1 - B82/B1). The first two
terms in the brackets represent the radiated power from single test
charge #1 and single test charge #2. These two terms, together, repre-
sent the incoherent radiation from the two particles. The last two
terms in the brackets represent the effects of coherence on the
radiated power from these two test particles. Again, if the particles
are moving at the same velocity and have the same initial position, the

radiated .power is

where Py is the radiated power from a single test particle.
Although it is not completely obvious in the analysis, expression
(4-37) does indeed describe a Cerenkov radiation process. This faet is

easily demonstrated using the Cerenkov (Landau) resonance condition:
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nﬂ =n cos B = %—- . (4=41)
b

Recall that if this condition is not met, the radiated power from the
beam is zero (see Equation 4-32). Since the phase velocity of the

emitted radiation is Vpy = ¢/n, the expression

PH
N ha Von (4-42)

can be written using (4-41). Consequently, a necessary condition to
obtain radiation from the beam is that Vi » Vpy, which describes a

Cerenkov process.

B. Practical Applications

Expressions (4-37) and (4-39) calculates the radiated power by
determining the coherence effect amongst the individual beam electron
radiators. This calculation represents a microscopie approach to de-
termining the radiated power. A general macroscopie approach has also
been derived and is presented in the Appendix. In this approach, the
radiated power from a beam with current density Jz(z,t) is calculated.
The macroscopic approach has a distinet advantage over the microscopic
approach since any real calculation of the radiated power can be com-
puted easier when considering the macroscopic variable J,(z,t). Using
the microscopic approach, the position and velocity of all N particles

as a function of time must be considered. Keeping track of all these
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variables on a computer requires large amounts of CPU time. Using the
macroscople approach, however, only requires a caleulation of the
macroscopie variable szz,t). which on a computer is far easier to
calculate. Consequently, for any practical power calculation, Equation
(A-10) will be used.

The microscopiec approach derived in this section is still an
important original work since it is the theoretical basis on which the
macroscopie approach is derived. This approach also considers explic-
itly the concept of radiative coherence between the beam particles; a
concept that is only implieitly dealt with in the macroscopic approach.

Calculating the radiated power using either approach requires a
knowledge of the beam phase-space configuration. Considering the SL-2
electron beam, the phase-space configuration must be modeled from a
particle simulation, since beam particle distributions were not obtain-
ed experimentally. There are two reasons for not measuring these dis-
tributions directly: first, when the PDP was in free flight, it did
not fly through the beam [W. R. Paterson, personal communication,
1986]. When it was on the RMS, it was maneuvered into the beam; how—
ever, the instrument that obtains these distributions, the Low Energy
Proton Electron Differential Energy Analyzer (Lepedea) instrument, was
turned off, since it was feared that a direct hit of the beam on the
instrument would alter its sensitivity [W. R. Paterson, personal
communication, 1986]. 1In either case, direct measurements of the elec-
tron beam distributions were not obtainable. Second, even if the

Lepedea instrument had been turned on and in a favorable position to



measure the beam distribution, the instrument's temporal resolution
(1.6 seconds) is not fine enough to directly measure instability-
related electron bunching which occurs on the order of 1/wpe ~ 10=7
seconds.

In the next section, the results of a one-dimensional electro-
static particle simulation of the 5L-2 electron beam will be reviewed.
The velocities and positions of the beam electrons obtained from
modeled phase-space distributions will be used to calculate J,(z,t),
and, using (A-10), the Cerenkov radiated power from the beam will be
calculated. This calculated power will then be compared to the

measured whistler-mode power obtained during the PDP/beam encounter.
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CHAPTER WV

A ONE-DIMENSIONAL ELECTROSTATIC SIMULATION

OF THE SL-2 ELECTRON BEAM

In order to complete a calculation of the radiated power from the
SL-2 electron beam, a knowledge of the electron beam phase-space dis-
tribution is required. As mentioned in the previous section, no
direct measurement of these distributions were made by the Lepedea
instrument on the PDP; thus, the distributions must be modeled. 1In
this section, the results of a particle simulation of the 5L-2 elec-
tron beam 1s presented that includes modeled phase-space configura-
tions of the beam that can be used to caleulate the radiated power.

To obtain the required beam distribution, a one-dimensional elec-
trostatic model of an electron beam propagating through an ambient
plasma is simulated on a computer. Generally, these models use sim-
ulation particles that are many times the mass and charge of an elec-
tron, and modeling the plasma using these particles is valid only when
many of these particles are contained in a Debye cube (Debye length
for a one-dimensional system). In this simulation, the ambient plasma
consists of electrons represented by simulation particles of negative
charge and immobile ions represented by a net positive background
charge. The simulation is designed so that initially there is no net

charge in the systems. The simulation particles representing the
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ambient electrons can move freely in this one-dimensional system;
however, they are confined to the system by re—injection boundaries.
Ambient electrons leaving the system at these boundaries are re—
injected with a Gaussian-weighted veloeity between zero and the elee-
tron thermal speed. The electron beam is represented by simulation
particles of negative charge that are injected into the system at the =z
= 0 boundary with veloecities greater than the ambient electron thermal
speed. In this one-dimensional simulation, a cold electron beam is
always injected into the system. In order to keep the net charge in
the system equal to zero, a positive charge equal in magnitude to the
amount of negative beam charge in the system 1s placed at the z = 0
boundary. This boundary charge imitates the spacecraft charging effect
observed on the beam—ejecting shuttle [Williamson et al., 1985].

In a one-dimensional simulation, only a particle's veloclity and
position in one dimension is considered. The total length of the
simulation system is divided up into "grids" of a Debye length, Ap, in
size. The charge density in each grid, p,, is calculated and the
numerical solution to Poisson's equation, Ep4) = Ep + 1/2(pp41 + pn),
is used te calculate the electric Field in the n+l grid. The simula-
tion partiecles are then allowed to move in the system under the
influence of this electric field for a period of time At £ Ap/Vp, where
Vg is the simulation beam speed. If At > Ap/Vg, the simulated beam
particles are moving more than one grid in At and will skip grids.
Since the ambient particles in the skipped grids will not interact with

the beam particle, the modeled system no longer represents reality.



After the simulation particles have evolved, a new charge density and
electric field is caleulated for each grid and the particles are again
allowed to move under the influence of the new electric Field. This
iterative process continues until the beam—-plasma interactions reach a
steady-state where then the simulation is terminated.

It is assumed that the particle's position and velocity in the
one-dimensional simulated electron beam and plasma is along a static
magnetiec field line. This alignment allows the simulated particle
trajectories to be unaffected by this field. Since the SL-2 electron
beam was nearly field aligned during injection, this modeling of the
electron beam should yield partiele distributions that, for the most
part, represent the true physical situation.

Generally,” near field—-aligned electron beams in test chambers and
on shuttle flights tend to expand from twice the radius of the elec-
tron generator opening te about two electron cyclotron radii in the
radial direction, if the generator opening is less than a gyroradius.
This radial or perpendicular expansion decreases the density of the
beam as it propagates away from its source. Figure 9 shows pictori-
ally this expansion of the beam. TInitially, the beam leaves the elec-
tron generator (z=0) with a radius Ty and a density ng. However, an
effect is present that causes the beam to expand perpendicular to the
magnetic field with a perpendicular expansion speed of Viexp. This
expansion may be related to edge effects of the generator opening or
to Coulomb repulsion of beam electrons. As the beam propagates along

the z-axis at a speed of Vg, the beam radius is expanding according to
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the first-order expression r = ry + —%EEEE with the local density of

the beam, n(z), changing proportionally. The beam expansion continues
until r £ r,, where r, is the cyclotron radius. By equating the
current at the generator to that at other points along z (J,45 =

J(z)A(z)), a first—order expression for n(z) is obtained:

2
n.r n
n(z) = 3: a7 (5-1)
(r + ——2Pj)? L
o Vv
B
where
v
L= (), (5-2)
lexp

The scale length, L, represents the beam length where the beam density
decreases to ng,/4, and is expressed in units of gun radii.

This perpendicular expansion is modeled in the simulation of the
S8L-2 electron beam. To include this effect, the density of the beam
electrons in the simulation are weighted by the factor fTI%TE}z’ where
L is treated as a free parameter. Consequently, the simulation is
able to model the density decreases associated with beam expansion
which affect the modeled electric fields and beam distributions.

The parameter, L, also indirectly affects the amount of positive

charge at the z=0 boundary during simulated beam injections. As



mentioned previously, the amount of positive charge at the z=0 bound-
ary is equal to the amount of negative beam charge in the system.
This charge is placed there in order to conserve the total charge in
the system, and effectively simulates spacecraft charging known to
occeur on beam—ejecting spacecraft. As L decreases, the beam density
and total beam charge in the system decreases which also causes the
amount of positive charge placed at the z=0 boundary to decrease.
Consequently, by varying L, both the modeled beam expansion and
boundary charging are altered.

Including these effects in the modeling of the 5L-2 electron
beam makes this one-dimensional simulation rather unique. Usually,
to observe the beam character under varying beam expansion and bound-
ary charge, a two-dimensional or three-dimensional simulation is need-
ed; however, by weighting the beam particles properly, this simple
one-dimensional simulation copiles processes occurring in these more
advanced simulations. As an example, results from a two—dimensional
simulation performed by Pritchett and Winglee [1986] are compared to
the results from this one-dimensional simulation under similar simu-
lated plasma conditions. Pritchett and Winglee's simulation is very
advanced. 1In their two-dimensional simulation system, a simulated
spacecraft immersed in a simulated plasma is able to eject a simulated
electron beam. Diagnostic software is included that analyzes the
electric fields and return currents that develop around the beam and
spacecraft. Unlike the one-dimensional simulation, both electron and

ion motion parallel and perpendicular to the static magnetic field are
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modeled. Electric fields and currents are also allowed to develop
both inside and outside the region where the beam propagates. It
would seem that such an advanced simulation would have very different
results for the electron beam distributions as compared to this
study's one—dimensional simulation; however, this is not the case.
Figure 10(a) and (b) shows the V, versus z phase-space configuration
of the beam electrons from Pritchett and Winglee's two-dimensional
simulation. For this particular simulation, the ratio of the beam to
ambient electron densities, ny/na, is 1/16 and the ratio of the beam
to ambient thermal velocities, Vip/Vyg, is 10. These figures show the
phase-space distribution of the beam after the simulation has run for
32 and 64 plasma periods. HNote, in both cases, that particle trapping
is evident by the looping structures in phase space. 1In Figure 10(b),
particle heating i1s ocecurring between 0-.5 Vg and the front edge of
the beam has a filament structure associated with it. Figure 11(a,b)
shows the V, versus z phase-space configuration of the beam electrons
from this study's one-dimensional simulation run with similar beam-
plasma parameters as Pritchett and Winglee's. For this run, the
expansion scale length parameter, L, is 100. Note that the phase-
space configuration of the beam has trapping, heating and filament
structures very similar to those of Pritchett and Winglee's, and indi-
cates that similar physical processes are being modeled in both
simulations.

The beam phase-space configurations from the one-dimensional

simulation are dependent on the expansion scale length parameter, L.
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Figure 12(a) and (b) show the beam phase-space configuration from the
one~dimensional simulation run with similar beam—plasma parameters as
Figures 10 and 11, only now L = = (no expansion). The phase—space
configurations shown in this Figure appear noticeably different,
particularly at the leading edge of the beam, compared to those shown
in Figures 10 and 11 and indicates that particle trapping dominates at
this leading edge. Consequently, beam expansion alters the beam
phase-space distributions by reducing wave trapping effects.

The modeling of an electron beam using the one-dimensional code
works equally well when simulating an overdense beam (ny > ny) in an
ambient plasma. TFigure 13 shows a V, versus z phase-space configura-
tion from the one-dimensional simulation for an overdense beam with
np/ng = 8, Vy/Vyy = 15 and L = 10. This configuration can be compared
with those obtained by Winglee and Pritchett [1986], who also perform-
ed a one-dimensional simulation of an overdense beam (np/ng = 2). The
beam phase-space distribution obtained from their simulation is shown
in Figure 14. Note, in both cases, that a large charge build up of
the beam particles is present at the injection boundary, with electron
bunches forming near the boundary.

The results of these one-dimensional simulations can be compared
to the results obtained from Pritchett and Winglee's two-dimensional
simulation of an overdense beam. The V, versus z beam phase-space con-
figuration from their simulation with np/ny = 8 and Vy/Vpy ~ 15 is
shown in Figure 15. WNote that a charge build up near the injection

boundary is again present, along with bunches of slow moving electrons.



For the modeling of both the underdense and overdense beam injec-
tions, this study's one-dimensional simulation is capable of replicat-
ing the results obtained from the one-dimensional and two-dimensional
simulations performed by Pritchett and Winglee. There is one distinect
advantage to the one-dimensional simulation and that is, unlike
Pritchett and Winglee's two-dimensional simulation, it can run for
very long times; thus, allowing the study of the steady-state nature
of the beam. Pritchett and Winglee's simulation has to be terminated
as soon as about 1% of the beam partieles leave the system in order to
maintain charge neutrality based on the simulation boundary condi-
tions; and this usually occurs after 60-100 plasma periods when the
beam and plasma are still in a transient state. To determine the
steady-state beam character, the simulation should be run for longer

times.

A. Results of the Simulation of the SL-2 Electron Beam

The one-dimensional electron beam simulation was performed under
similar conditions that prevailed during the SL-2 1 keV-50 mA electron
beam injection. The simulated plasma parameters during these runs are
displayed in Table 1. The 1 keV-50 mA electron beam was initially
injected with a density much greater than the ambient electron den—
sity. 1In order to model this overdense beam in the simulation, an
electron beam consisting of simulated electron particles was injected
into the simulated plasma with a density fives times greater than the
ambient electron density. This beam was injected with a velocity Vp >

Veh, where Vip is the ambient electron thermal velocity. In the
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region of the ionosphere where the 5L-2 electron beam experiment was

performed, Vy 100 V¢ne Simulations were performed with this

Table 1. Simulation Parameters

nban at z = 0 5

Vo/Vin 20

z 1200 Ap (~ 60 meters)

L 2, 3, 5, 10 Gun Radii

t 270 mpe_l (~ 1.3 x 107° sec)
Total number of 24000

ambient particles

veloeity ratio; however, it was found that Vy/Vyp could be as low as 20
without significantly altering the beam velocity distributions. Lower-
ing this ratio, however, allows the beam-plasma interactions to occur
over shorter length scales, which increases the effective length of the
simulation system. Consequently, the simulations were run with Vy/Vep
= 20, which then increased the effective beam length being simulated by
a factor of five without altering the interactions being modeled.

The length of the simulation system was selected to be 1200
simulation units long, which corresponds to a length of approximately
60 meters. This length was selected since it is much larger than the
size of the expected beam density perturbations, and allows the

simulation to be run in a couple CPU hours.
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The results of four simulations run with different L values (2,
3, 5, 10) will be presented. Based on practical arguments of beam
expansion, spacecraft charging and wave activity, the model that is
most consistent with the SL-2 electron beam will be selected.

A simulation was performed with the plasma parameters shown in
Table 1, with L, the beam expansion parameter, equal to 10. TFigure 16
shows the V, versus z phase-space distribution for the first 60 meters
(1200 simulation units) of the beam at t = 270 wp~'. Note that the
beam is strongly decelerated near the z=0 boundary. TFigure 17 shows
the electric field versus z for this time. The electric field is mea-
gsured in dimensionless simulation units, where one of these units cor-
responds approximately to 6 V/m. Note that a very large positive
field is present near the z=0 boundary. This electric field is similar
to those obtained by Pritchett and Winglee for an overdense beam and
results from the strong charging at the boundary. Figure 18 shows the
total number of electrons in the beam versus z, and indicates that
randomly—-spaced density fluctuations are present in the beam; however,
as Figure 16 indicates, their velocities are significantly smaller
than the initially injected 1| keV-beam velocity. WNote from Figure 16
that there is an accumulation of electrons almost lying directly on
the z=0 boundary. Many of these electrons have significant negative
velocities (V ~ -bez}. This return electron current has been
described in great detail by Katz et al. [1986] and is a result of the

large potential that develops near z=0 due to charging.
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Beam expansion is increased and spacecraft charging is decreased
for the simulation runm with L = 5. Figure 19 shows the V, versus z
phase-space distribution of the injected beam for the first 60 meters
at t = 270 mpil. The distribution does not appear signifiecantly
different from that obtained from the run with L = 10 (Figure 16);:
however, more electrons are able to escape the region near the charged
boundary. Figure 20 shows the electric field versus z at t = 270
mpe—l' Note that a strong electric field is again generated near the
z=( boundary; a result from charging effects at the boundary. Figure
21 shows the total electron number versus z, again indicating that
randomly-spaced density perturbations are escaping from the region
near the charged boundary.

Note for both the L = 5 and 10 simulation runs that after 270
wpe !, the bulk of the beam electrons have not propagated 30 meters
past the injection boundary. 1In contrast, if the beam had propagated
unperturbed, it would have extended out to 135 meters: thus, apacé—
craft charging is drastically altering the character of the beam in
these runs. 1In reality, it may be that large return currents are
flowing back to the shuttle along paths unrelated to the beam; such
as along magnetic field lines connected to a conducting surface on the
shuttle. Such currents may neutralize the spacecraft charge sub—
stantially. 1If this charge is significantly reduced, the beam phase-
space distribution will appear as that shown in Figure 22. This

result was obtained from a simulation run with L = 3. WNote that the

beam can propagate freely from the injection boundary. The initially



39

cold beam becomes thermalized and bunches of electrons propagate from
the z=0 boundary. WNote that the beam has a significant number of
particles with speeds greater than the initial beam wvelocity. This is
an effect of particle acceleration from an electrostatic wave in the
beam. This wave is clearly evident in Figure 23, which displays the
electric field versus z. Also nnté from this figure that the strong
charging—related electric field near the z=0 boundary is reduced.
Figure 24 shows the total number of beam electrons versus z, and indi-
cates that nearly periodie, highly-localized bunches of electrons are
present and, from Figure 22, it is concluded that the collective bunch
veloecity is near or above the initial beam velocity.

Figure 25 shows the V, versus z beam phase-space distribution
from the simulation run with L = 2 at t = 270 mp*l. Note that the
beam can again propagate freely from the z=0 boundary. Also, note
from this figure, that electron bunches are clearly evident at the top
of the elongated looping phase-space structures. Figure 26 displays
the electric field versus z at this time. Note that strong electro-
static wave turbulence is present in the beam; however, the relative
amplitude of this wave decreases as a function of z. This wave ampli-
tude decrease is an effect of the extreme width-wise beam expansion
being simulated. This expansion causes the beam density to strongly
decrease as a function of 1/z?, which strongly decreases the turbulent
electric field according to Poisson's equation. The magnitude of the

wave then decreases as the density of the perturbing electrons
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decreases. Figure 27 shows the total number of beam electrons versus
z. Note that highly localized bunches are evident in the beam.

In Chapter III, calculations were made assuming the bunches had a
length, AL, of about 7 meters. This bunich length is clearly quite
different from those obtained from the simulation. For the runs at L
= 2 and 3, the bunches are highly loecalized (AL ~ .1-.5 m), nearly
periodic, fast-moving groups of charges, while for L = 5 and 10, only
small randomly-spaced density fluctuations exist in the beam. The
density character of the beam in both cases differ from that described
in Chapter III, since the simulation is modeling nonlinear wave and
spacecraft charging effects occurring in the beam. These effects can
drastically alter the beam character and were not included in the
simple calculations performed in Chapter III.

As mentioned previously, a choice between the four different beam
models must be made to determine which correctly models the SL-2 elec-
tron beam. The models presented can be classified according to space-
craft charging's influence on beam propagation. For the runs with L =
5 and 10, spacecraft charging is able to drastiecally alter the inject-
ed beam, while for runs with L = 2 and 3, the beam is only slightly
influenced by charging effects. 1In reality, the importance of charg-
ing depends on the ability of the shuttle to effectively conduct
return currents that neutralize the positive charge created during
electron beam ejections.

Williamson et al. [1985] have shown that during SL-2 electron

beam injections, the shuttle only charged up to between 0 and 40



voles. Consequently, enough return current was drawn from the iono-
spheric plasma to sufficiently neutralize the positive spacecraft
charge, and this charge neutralization allowed the beam to propagate
freely from the shuttle [Banks et al., 1985]. A beam freely escaping
the near—shuttle region is consistent with the simulations run with L
= 2 and 3, and rules out the L = 5 and 10 simulation runs as possible
models of the SL~2 beam.

Figure 26 displays E, versus z for the simulation run with L = 2.
As mentioned previously, a self-consistent electrostatic wave is pre-
sent in the beam with an amplitude that decreases with increasing z,
and has a frequency near wpe. From the figure it appears that the
wave has an amplitude barely above simulation noise level in regions
of the beam where z » 7 meters (150 simulation units). This modeled
wave activity is inconsistent with observations made by the PDP on the
RMS, where strong electrostatic wave turbulence near wye Was detected
by the PDP radio receivers in regions of the beam where z > 7 meters.
This model of the beam is then ruled out as a realistic model of the
SL-2 electron beam.

From the above arguments, it seems that the simulation run with
L = 3 is the best model of the SL-2 electron beam. There are two
more points to support this conclusion. The first point inveolves the
energy spectrum of the backscattered beam electrons detected near
magnetic conjunction by the Lepedea instrument. Apparently, these
electrons were not monoenergetic, but were observed at all energies

from 2 eV, the lowest Lepedea channel, to about 1 keV [W. R. Paterson,
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personal communication]. If nearly-elastic collisional processes
dominated the backscattering, the beam distribution would also have a
similar energy spectra, which is consistent with the L = 3 simulation
run (see Figure 22). Also, from Figure 23, strong wave activity is
present in the beam for this run. These waves have a frequency near
Wpe and are similar to those observed by the PDP in the beam. Conse-
quently, the beam model with L = 3 is consistent with the observed
beam spectra, wave activity, and spacecraft charging during the 1 keV

=50 mA electron beam injection, and is clearly the best beam model.

B. The Radiated Power From a Model of the SL-2 Electron Beam

The radiated power from the modeled SL-2 electron beam will now
be calculated. This power will be compared to the measured whistler-—
mode power to determine if coherent Cerenkov radiation from a bunched
beam is a viable wave generation mechanism.

It has been assumed throughout this analysis, that the magnitude
of the electric field of the generated Cerenkov radiation is much
smaller than that of the electrostatic wave generated within the beam,
Egg »> Egap- This assumption implies that the radiation electric
field did not significantly alter the SL-2 beam electron trajectories,
and is consistent with the modeling of the beam where radiation field
effects are neglected. This assumption is also consistent with
observations made during the SL-2 experiment, where Egg > .3 V/m in
the beam while Egap ~ 1073 y/m for the whistler-mode waves.

The radiated power from N particles in a specific length segment

of the beam can be calculated using equations (4-37) and (4-39). To
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actually compute the power using these expressions, however, requires
large amounts of costly computer time. An easier way to calculate the

power is to use the expression (A-10):

(A-10)

x [21 Jp(ky(ny,00) )T *%(ky(n,84))] .

In this expression, Vg is the velocity of the frame moving with the
beam such that the current density, J,(z,t), is cunsidefed time inde-
pendent. 1In deriving (A-10), a transformation to this frame was made
in order to calculate the radiated power from a specific beam segment.
Consequently, J,(z,t) becomes J,(z') in this new frame, where z' = z
=Vgt. 1In (A-10), J,(k,) represents the spatial Fourier transform of
J,(z"). Once J,(k,) of a specific beam segment is known, the power
radiated from that segment is easily calculated. As mentioned in
Chapter IV, calculating the power using macroscopic variable J,(z,t)
requires less computer time than calculating the radiated power from
each particle. 1In deriving expression (A-10), it has been assumed
that a frame of reference exists where the current density is com—
pletely independent of time. 1In this frame, all beam density pertur-—
bations have to propagate at identically the same speed, Vg. The
transform of the current density is then properly expressed as (4-4),

with the delta function specifying the speed of the density
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perturbations. This subtle condition placed on the propagation speed
of the perturbations reduces the generality of equation (A-10) com-
pared to equation (4-37) which expressed the radiated power from N
electrons with arbitrary speeds. Despite this reduction in genaral-—
ity, it will be shown that (A-10) is quite capable of yielding a rea-
sonable estimate of the radiated power from the modeled SL-2 electron
beam with bunches moving at or near Vg. It should be noted that in
the frequency range of consideration, nj >> mg, n] ¥ n where n is the
whistler-mode index of refraction obtained from cold plasma theory and
T33(ny) = 103 T33(ny). Also, based on arguments of the typical den—
sity structure size in the beam, J,(k,(ny,80)> Jz(kz(np,80)). Con-
sequently, the k=2 term in the summation of Equation (A-10) is very

small and can be neglected. The radiated power can then be expressed

as
P(t) =P = T T_—lwlde L | 1200 (k)5 #(e)IT, (n)  (5-3)
~ = | Bm goeqe?Vg (n5-ni) o Lt ety e B |
n cos 8w
where k} = —— . Note that n; > ny which makes the term in

brackets positive in the frequency range considered.

A simulation of the SL-2 electron beam was run with a simulation
length three times longer than-those run previously. This simulation
length now extends 3600 grid lengths and represents a model of the

first 180 meters of the SL-2 electron beam. This increased length was
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added to improve the resolution of J,(k;) in the whistler-mode range
of kz'. The V; versus z phase-space configuration for this modeled
beam at t = B840 mpe“l is displayed in Figure 28. WNote that this
phase-space configuration is very similar to the phase-space configu-
ration of the 60-meter beam segment displayed in Figure 22. Both con-
figurations have two electron components: a strongly heated component
found in phase-space regions where V <{ Vy and electron bunches found
in phase-space regions where V > Vi, These bunches are particularly
pronounced in the first 75 meters of the beam (from z = 0 te 1500).
Using Equation (5-3), the radiated power will be calculated from a
beam—segment extending 175 meters in length from z = 100 to 3500. The
first five meters of the beam is not included in the calculation since
the beam phase-space configuration near the generator (z = 0 boundary)
is atypicallﬂf the rest of the beam. The power radiated from this
175-meter segment is equal to the Poynting flux through a cylindrical

surface of radius R and length L = 175 meters surrounding the beam:
P175m = Sy 27R L (175m) . (5-4)

Since the radiated power varies directly with L, the power from a

200-meter beam segment can be approximated by

Pogom = (200/175) Py75p . (5-5)
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A quantity that has to be determined in (A-10) is Vas the veloe-
ity where the current density, Jz{z,t}, is considered independent of
time. This current density consists of two parts, J,(z,t) = J,(z,t) +
Ji(z,t). The quantity J,(z,t) represents the current density from the
randomized electrons found in regions of phase space where V; < Ve
The current from these electrons is flowing continuously at a nearly
constant value thus Juy(z,t) = Jo(2z). The quantity J;(z,t) represents
the current density from the density perturbations or bunches in the
beam found in regions of phase space where V, > Vy. The current from
these perturbations is time dependent, with bunches passing a point z
= 2y &t a periodiecity of approximately lfmpe- Consequently, the cur-
rent density can be rewritten as J,(z,t) = J,(z) + J;(z,t). The frame
of reference where J,(z,t) appears stationary is then a frame that is
moving with the bunches since Jj(z,t) is the only time-dependent term
in the current density. From Figure 28 it is evident that the bunches
are propagating at V = 1.5 Vi, = 2.8 x 107 m/s; thus, Vg = 2.8 x 107
m/s.

Bunches created by an electrostatic wave in the beam propagate
near the phase speed of the wave, Vph = w/kz. The frame where J,(z,t)
is considered time independent is then a frame moving with this wave,
Vg = Vph. To determine the wave phase speed, the Fourier transform of
Jz(z,t), in both time and space for the 175-meter beam segment is
calculated and plotted as a function of w and k,. This plot is
displayed in Figure 29. If the perturbations in current density

result from beam interaction with an electrostatic wave, then Jz



(ky,0) will be most intense near Vph+ Note from the figure that J,
(k;,u) does indeed peak near w/k = Vph = 2.8 x 107 m/sec, which is
represented by the solid line in the figure. Consequently, if a
transformation is made to a frame moving at Vg = Vpp = 2.8 x 107 ms/s,
the current density appears nearly stationary. WNote also from the
figure that all the bunches are not moving exactly at Vphs but have a
spread in veloeity in a range 24V about vph. Consequently, in the
moving frame, some second-order temporal perturbations in the current
density will be present and must be considered in the ecaleculation of
the radiated power. As will be shown later, these second-order
perturbations will not signifiecantly alter the caleculation of the
radiated power.

The current density calculated from the 175-meter segment is
considered the density in the frame moving at Vg, J,(2z'), where z' = z
=Vgt; and the Fourier transform of this current density, Jp(k;), will
be used in (5-3) to determine the radiated power from this segment.
The transform of a 175-meter beam segment will yield discrete values
of J;(k;) at each k, = 2vm/175 meters where m is an integer from 0 to
1750. A plot of J,(k;) versus k, is displayed in Figure 30. The
resulting transform appears as a white-noise type k-spectra for k; >
22; however, for k, < 22, J,(k,) appears to increase as k, decreases.
The white-noise type k-spectra found in k; > 22 results from the ran-
domized position and velocity of the simulation electrons used in the
computer model. This noise is inherent in the modeled system since

simulation electrons many times the mass and charge of real electrons
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were used in the model. Although not feasible, if real electrons had
been modeled, this noise would be reduced to nearly zero. The average
nolse level was calculated by summing the J,(k,) values between k, =
28,7 and 62.8 and dividing by the number summed. This level is repre-
sented by the dotted line in the figure. The increase in J,(k;) found
in ky; < 22 results from wave-particle interactions within the beam
that create localized charged regions or bunches. If bunching had not
peceurred, the simulated beam electrons would be randomly spaced in
both velocity and position and the resulting J,(k,) would appear as a
white noise type k-spectra at all k, values.

To solve (5-3), J,(k,) evaluated at k,' = n cos 8gw/c is
required. This k,'(w) represents the wave numbers that satisfy the
Landau resonance condition and varies from .0l at 31.1 kHz to .25 at
1 Miz. The J,(k,) values that correspond to k;' are presented,
graphically, in Figure 30. MNote from this figure that six values of
J,(k;) fall in the range of k;' for the whistler-mode. Table 2 lists
these J,(k,) values with the simulation noise level subtracted at
their corresponding k,' and f(= Vgk,'/2w). Using Equation (5-3) and
(5-5), the radiated power spectral density, dP/df, from a 200-meter
beam segment 1is evaluated at each of the six frequencies. These
values are plotted as a function of wave frequency in Figure 31
{represented by x's) along with the caleculated incoherent Cerenkov
power spectra (represented by o's) and measured whistler-mode power
spectra (represented by .'s) from the 200-meter SL-2 electron beam

segment.
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Table 2. Values of J,(k;)

k, (1/m) f (kHz) J,(k,) (Noise Level Subtracted)

.0395 176 «092
0790 352 «035
1185 529 «192
«1580 705 067
«1975 81 123
+2370 1057 «112

Note that the inclusion of coherent effects amongst the beam electrons
increases the wave powers by almost 10% (90 dB's) above incoherent
power levels. Also note that the coherent power level is near the
measured whistler-mode powers. 1t is clear from the figure that
coherent Cerenkov radiation from the beam can indeed account for the
measured whistler-mode wave power. 1In fact, the calculated power from
the modeled beam overestimates the measured power by about a factor of
10. This disagreement may result from the fact that both the computer
simulation of the beam and the power calculations were performed in
only one dimension. 1In this case, motion of the beam electrons per-
pendicular to the static magnetic field have been neglected. Such
motion, as the electron's gyromotion, can change the radiative coher-
ence of the beam electrons by giving them a significant displacement

perpendicular to the geomagnetic field. Also, the one-dimensional
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simulation of the beam has completely neglected any finite radius
effects that occurred in the SL-2 electron beam. These effects can
reduce the amplitude of the electrostatic wave in the beam, which cor-
respondingly reduces An, the beam density perturbations. The radiated
power from the S5L-2 electron beam with its finite radius should then
be less than the predicted radiated power from the model. Landaun
damping of the whistler-mode waves in the S5L-2 electron beam may also
reduce wave powers. This damping oecurs because the Cerenkov radia—
tion emitted by the bunches with a phase speed, Vyp < Vg, is able to
interact with the heated component of the beam. This damping is not
considered significant, however, since the path length for damping

(as well as wave growth) in the SL-2 electron beam is very short.
Consequently, the radiation will not interact with the thermalized
beam component long enough to be altered significantly.

Note in Figure 31 that the frequency range of the modeled
coherently radiated power does not extend below 176 kHz. This low
frequency limit results from the discreteness of the J,(k,) values
used in the calculations. For a 175-meter beam segment, values of
J,(k;) can only be obtained at specific k, and f values; namely, at
k, = 2rm/175 meters and f = mVy/175 meters, where m is an integer
extending from 0 to 1750. Consequently, the first nonzero frequency
where a J;(k;) value exists and the power can be determined is at 176
kHz. Values of power spectral density cannot be obtained below this
frequency for a beam of this length. Increasing the beam length will

allow the radiated power to be determined at lower frequencies;
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however, the computer run time will also be increased, possibly beyond
practical considerations. As an example, a calculation of the
radiated power at 50 kHz would require nine times the CPU time cur-
rently used (from 24 to 216 VAX CPU hours) and a similar calculation
at 31 kHz would require a twe?ty“five times increase in CPU time (from
24 to 600 VAX CPU hours). Clearly, power calculations at these lower
frequencies are not feasible.

Based on the results of the simulation, the measured whistler-
mode powers calculated in Chapter II and displayed in Figures 6 and 31
should be corrected to account for the radiation emitted by bunch
electrons moving at speeds 1.5 times greater than the initial injec—
tion speed. The original calculation of this power assumed that all
the beam electrons were moving at their initial injection wvelocity of
1.89 x 107 m/sec which, from the Landau resonance condition, corre-
sponds to a value of ny = 15.9. This value of n; was used to
constrain the values of n(8) obtained from cold plasma theory and
specified the values of n and A8 used in the magnitude of the Poynting
vector, expression (2-2). From the simulation, however, it is evident
that the radiation is emitted from electron bunches moving at Vg = 2.8
x 107 m/sec, which corresponds to a value of nj = 10.7. As a conse-
gquence, the measured power is about 50% greater when considering
radiation from the faster moving bunches. Although this increase is
insignificant compared to the factor of 10 difference between measured
and coherent Cerenkov power values, it still should be mentioned.

Recall that the Landau resonance had to be incorporated into the
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measured power calculations since complete information on E and B

of the measured whistler-mode waves was unavailable. The measured
power is then considered a model dependent gquantity based on values of
nj -

As mentioned previously, all the bunches in the beam are not
propagating at exactly Vg, but instead propagate in a range of veloc-
ities, Vg £ AV, where AV is the typical veloecity spread. Consequent-
ly, in the moving frame, the current density is not completely
independently of time as assumed in the derivation of (5-3), but has
second-order temporal variations that can alter the radiative
coherence of the beam. The effect of these temporal variations on the
radiated power will now be considered.

Consider a current density that varies as J,(z') e_tzftnz. where
t, represents the typical time of the temporal variations in the
current density. The corresponding transform of this current density

in space and time 1s written as

E—aztgfﬁ

e t
_— = = z Ir—— (2]
Jq{k,w} VD 2n szkz} ;}%

(5-6)

where Jz{kz} is the spatial transform of the current density and a =
kzvs = We
If the electrostatic wave in the beam is monochromatic, the

corresponding density perturbations propagate at the phase speed of
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this wave. The transform of the current demsity is then peaked at
w/k, values where w/ky = Vpp = Vg, with no spread in u or kyz. In this
case, the current density is properly represented by (A-4). However,
as Figure 29 indicates, the transform of the current density has a
significant spread about w/kyz = Vph = Vs- Consequently, this trans—
form is best represented by (5-6), where the delta funmction in (A-4)
is replaced by Gaussian function centered at w/k, = Vg. Note as t, +
=, the two expressions become identical.

Following a similar analysis as that of the Appendix, the

radiated power is found to be

. | (z+T1e2) [21 J5(kz)Tz(k,)*] s
P(t) = @ I Bl tzz . (5-T)
fo o o Crtistlgde
EE [a] L]

The time-averaged radiated power is now calculated. This power is

defined to be

T
=—‘ﬁ [ BCe) ae (5-8)

P
where T is the time interval over which the power is averaged. An

integral of the form

2
L [}

I=57% lr e dt (5-9)



must now be solved. Expression (5-9) can be reexpressed as

e 2
acty r iat, o
e il P S
I = —s- e o dt . (5-10)
2T =7

The whistler-mode radiation detected by the PDP radio receivers
at any instant in time is generated from a beam length segment, &.
The typical time an electron spends in £ is € = /Vp. Consequently,

(5-10) can be rewritten as

-aZt 2 t iat
i b
I= SRS I =] a dt . (5-11)
o

Since £ is small, £ <{ ty, and (5-11) is near unity.

The average radiated power is then

.

t
= 1 o i E; 0
) s el
P = onyfeoz | (T )2 J,(k )I5(k,)] = nw dn du dk,

(5-12)

— _ n?ud nw?
where dk = —3— dn sin 6 d8 d¢ = -7 dn dk; d¢. Equationm (5-12) can

be expressed as

t —a?t,y’
P = [ Flky,up) —— e & dk, ; (5-13)
duy |w=g -
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Table 3. The Change in Radiated Power From Considering a Current
Density With a Spread, Ak.
dF dp
Frequency -Eaiﬁkz = kzn)ﬁaaiﬁkz+n)
562 kHz .930
311 kHz 887
178 kHz 924
100 kHz 942
56.7 kHz 979
31.1 kHz 1.031
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CHAPTER VI

THE ELECTRON BEAM AS AN EFFICIENT ANTENNA

In this study, it has been concluded that the whistler-mode emis-
sion detection from the SL-2 electron beam is created by coherent
Cerenkov radiation from electron bunches in the beam. Consequently,
the electron beam is considered an antenna radiating the whistler-mode
radiation. As will be shown, by positioning the radiating bunches
properly in the beam, the radiation efficiency of this "antenna" can
be improved. Consider, first, the bunches formed in the continuous
S8L-2 electron beam. From Figure 22 it is evident that these bunches
have a length, £ = .1-.5 meters and have a spacing, d £ 6 meters,
apart from each other. This bunching of the modeled beam is clegrly
evident in Figure 30 which displays J,(k,) versus k,. In this figure
the maximum J,(k;) value is near k, = 27/d = 1 corresponding to the
typical bunch spacing. Note that this maximum value lies outside the
range of k,' of the whistler-mode radiation. More power in the
whistler-mode would have been obtained from the beam if this maximum
J,(k;) value had been in the k,' range. 1In this case, the spacing
between the bunches would then be equal to the parallel component of a
whistler-mode wavelength, d = Xy; and the coherent radiation from the

bunches in the beam at f = Vg/A; would constructively interfere. This
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process would significantly increase the wave powers above those mea-
sured from the SL-2 electron beam to near 107°% W/Hz at E = Vg/i.

This effect can be artifieially induced by pulsing the electron
beam near the whistler-mode range of frequencies. Unlike the contin-
uous beam, a beam—plasma instability is now undesirable, since it
tends to destroy the highly coherent pulses ejected from the gun.
Consequently, to reduce the effects of the instability, the length of
the pulses, &, should be & << vbffper where Fhffpe represents the
characteristic length over which the instability acts and is the wave-
length of the instability-related electrostatic wave. Also, the spac-
ing between the pulses, d, should be equal to a parallel component a
whistler-mode wavelength, Aj. If these two conditions are met, the
radiated power at f = Vy/d will be quite intense. As an example, con-
sider a 1 keV — 50 mA electron beam in the same plasma environment as

the continuous SL-2 electron beam, however, pulsed such that
J (z) = E NgV &(n 31.4 meters)
z n=0

where p is the number of pulses in a 200-meter segment (equal to 6).
In this idealized example, the individual pulses have an infinitesi-
mally small length, £, and are spaced 31.4 meters apart from each
other. For a 1 keV =50 mA electron beam, V = 1.89 x 107 m/sec and N =
4.9 x 101! electrons. The value of k, corresponding to the pulse

spacing, d, is k, = .2. The Fourier transform of J,(z) is
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Note that at k, = .2, J,(k,) is a maximum since the exponential term,
representing the relative phase difference between the pulses, goes to

unity. Consequently,

I (k = .2) =584V _ 5 54
z z e
V2

From the Landau resonance condition, this value of k; corresponds to a
frequency of 600 kHz. The radiated power is then a maximum at this
frequency and is calculated to be ~ 3 x 10~% W/Hz from a 200-meter
pulsed beam segment. MNote that éhis power is over 105 greater than
those measured by the PDP. Consequently, the constructive
interference amongst the pulses increases the radiated powers

drastically.

5
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CHAPTER VII

CONCLUSIONS

The whistler-mode radiation detected by the PDP during its Elyby
of a 1 keV = 50 mA electron beam has these characteristies:

A) The radiation is propagating near the resonance as determined
by the electric field polarization.

B) About 1.6 mW of the radiation is emitted from the first 200
meters of the beam, corresponding to about 8 x 107% W/m of emitted
radiation from the beam.

C) The calculated wave powers from the beam are well above those
expected from incoherent Cerenkov radiation processes in the beam.

Many mechanisms have been discussed to account for the detected
signal; however, the best mechanism is coherent Cerenkov radiation
from density perturbations or bunches in the beam. These bunches are
created by an electrostatic beam—plasma instability occurring within
the beam.

The existence of these bunches is verified in two ways: first,
when the PDP was in the beam, radio receivers detected very intense
waves near wpe. These waves are believed to be associated with the
instability creating the bunches. Second, a one-dimensional computer
simulation of the beam clearly shows the presence of electron bunches

in the beam.
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The calculated power from the simulated beam indicates that the
radiation from electrons in bunches is coherent enough to account for
the measured whistler-mode power. Consequently, from this study it is
concluded that the whistler-mode radiation Erom the SL-2 electron beam

is generated by coherent Cerenkov radiation from a bunched electron

beam.



Figure 1

4 frequency vs. time spectogram from the PDP plasma
wave instrument showing intense emissions during a D.C.
electron gun firing. The funnel-shaped structure that
extends from the electron cyclotron frequency, f,, to

-

about 30 kHz is whistler-mode radiation from the beam.
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Figure 2

This diagram shows the index of refraction surface for

the whistler mode and the associated E;'E, and ;é vectors
for propagation near the resonance cone (8 = Bpeg). For
propagation near the resonance cone, k and E are parallel

and nearly perpendicular to ;%. In this limit E is

linearly polarized and quasi-electrostatiec.
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Figure 3

This diagram shows the ray path and E, k, and ?é vectors

used to confirm the electric field polarization. The
assumed electric field is projected into the PDP spin
plane and the angle relative to the projection of the sun
vector is calculated. The projected electric field
direction can then be compared to the measured directions
calculated From spin modulation maximums in the electrie

field intensity (see Figure 4).
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Figure 4(a), (b), (e), and (d) These plots show the relative directions
of the computed and measured electric—field wvectors in the
PDP spin plane for the 562 kHz, 311 kHz, 178 kHz, and 100
kHz frequency channels. The dots represent the computed
electric field directions assuming that the wave vector is
near the resonance cone with‘E:;h > 0, and the x's repre-
sent measured electric—-field directions. The close agree-
ment between the measured and modeled directions indicates
that the whistler-mode radiation is propagating near the

resonance cone in the same direction as the beam.
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Figure 5

90

This diagram shows the Integration surface used to
calculate the power emitted from the beam in the whistler
mode. At closest approach, the PDP passed within 3 meters
of the beam at a distance of about 200 meters from the

shuttle.
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Figure 6

92

The calculated power spectral density from the beam in the

whistler mode is shown as a function of frequency.
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Figure 7(a) and (b) The linear emissivity, dP/dfdf, is shown as a
function of the distance, L, along the beam for the 562
kHz and 311 kHz frequency channels. HNote that the
emissivity starts to decrease rapidly beyond about 100

meters.
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Figure B8

The power spectra from a single electron radiating via
the Cerenkov processes is shown in a plasma environment
similar to that surrounding the SL-2 beam. These
calculations assume the wave/beam interaction is by a
Landau resonance process and that the particle pitch
angle is 10°. This power calculation is based on

formulas derived by Mansfield [1967].
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Figure 9

This figure displays the radial expansion of a
field-aligned electron beam after it is initially
ejected from a gun of radius r,. As the beam
propagates, the radius expands according to
+v$ﬁﬂz.

b

!.'=1.'0
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Figure 10

This figure is a V, versus z phase-space configuration of
electrons from a beam of density np = 1/16 ng and Vi = 10
Ven after (a) 32 wpe™! and (b) 64 wpe™!. This
configuration is obtained from Pritchett and Winglee's
two—dimensional simulation [1986]. The beam is injected

Erom a spacecraft located at z = 125.
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Figure 11 This figure is a V, versus z phase-space configuration of
an electron beam with similar density and velocity as
that of Figure 10 taken from the one-dimensional

simulation developed in this study. Note that L = 100.
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Figure 12 Again, a beam phase-space configuration is shown from the
one-dimensional simulation developed in this study run
with similar parameter as those of Figures 10 and 11, only

now L = » (no radial beam expansion).
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Figure 13 This V, versus z beam phase-space configuration is from
the one-dimensional simulation run with np = 8 ny, Vi = 15
Vry and L = 10 for two different times: (a) 20 “perl

and (b) 30 wpe™!.
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Figure 14 This figure is a beam phase-space configuration
taken from Winglee and Pritchett [1986] for an overdense

beam (np/np = 2). Note that the beam structure looks

similar to that of Figure 13.
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Figure 15 This figure is a beam phase-space configuration
taken from Pritchett and Winglee [1986] for an overdense
beam (np = 8 ny) at two different times: (a) 16 wpp™' and

(b) 32 mpb_l.
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Figure 16 This figure is a V, versus z phase-space configuration of
the modeled SL-2 electron beam obtained from the
one-dimensional simulation run with the parameters shown

in Table 1, with L = 10.
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Figure 17 This figure displays E, versus z from the one-dimensional
simulation run with L = 10. Note that a strong electric

field is located near z = 0.
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Figure 1B This figure displays the number of electroms, N, versus z

from the modeled beam run with L = 10.
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Figure 19 This figure is a V, versus z phase-space configuration of
the modeled SL—-2 electron beam obtained from the
one=dimensional simulation run with the parameters shown

in Table 1, with L = 5.
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Figure 20 This figure displays E, versus z from the one-dimensional
simulation run with L = 5. Note that a strong electrie

field is located near z = 0.
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Figure 21 This figure displays the number of electrons, N, versus =z

from the modeled beam run with L = 5.
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Figure 22 This figure is a V, Versus z phase-space configuration of
the modeled SL-2 electron beam obtained from the
one-dimensional simulation run with the parameters shown

in Table 1, with L = 3,
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Figure 23 This figure displays E, versus z from the one-dimensional
simulation run with L = 3. Note that wave activity is

present in the beam.
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Figure 24 This figure displays the number of electrons, M, versus =z

from the modeled beam run with L = 3.
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Figure 25 This figure is a V; versus z phase-space configuration of
the modeled S5L-2 electron beam obtalned from the
cne—dimensiona'l gimulation run with the parameters shown

in Table 1, with L = 2.
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Figure 26 This figure displays E, versus z from the one-dimensional
simulation run with L = 2, WNote that wave activity is

present in the beam.
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Figure 27 This figure displays the number of electrons, N, versus z

from the modeled beam run with L = 2.
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Figure 28

This Ffigure is a V, versus z phase-space configuration
of the modeled SL-2 electron beam obtained from the
one-dimensional simulation run with L = 3 and a length
of 3600 grids corresponding to 180 meters. HNote that
the beam phase-space configuration is similar to that

shown in Figure 22 for a 60-meter beam segment.
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Figure 29 This diagram is a plot of J,(k,,w) as a function of w
and k, for the 175-meter beam segment. The largest
values of J;(k,,w) are completely dark, while o's and
«'s represent continually lower intensities. Note
that the values of J,(k,,w) peaks at about wlk, = 2.8

x 107 m/s.
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Figure 30

This figure shows the variation of J,(k,) for the 175
meter beam segment as a function of k,. WNote for k,
< 22 that Jz{kz) inereases as k, decreases. This
variation in J,(k;) results from the density pertur—
bations in the beam created by a beam—plasma insta-
bility. Also shown in the figure is the simulation
noise level. This noise is obtained since simulation
electrons many times the mass and charge of real
electrons were used In the computer model. The range
of ky' of the whistler-mode waves is also shown in

the Figure.
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Figure 31

This figure shows the power spectra of the measured
whistler-mode radiation from the first 200 meters of
the SL-2 electron beam along with the caleculated
power spectra of the inecoherent and ecoherent Cerenkov
radiation from a 200-meter beam segment. WNote that
the inelusion of ecoherent radiation effects increases
the calculated powers to those measured from the SL-2
electron beam. Based on these results, it is
concluded that coherent Cerenkov radiation from a
bunched electron beam generates the detected

whistler-mode radiation.
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APPENDIX

4 general formula for the radiated power from a field-aligned
beam of current density J,(z) has been derived by C. K. Goertz. From
this very general formalism, the radiated power from a single
particle, N particles and a pulsed beam can be easily obtained.

First, the current density is written as

EA(E}t} =z {nev>zﬁ(x)6(y] =z Jz(z,t} §(x)8Cy) (A-1)

r

where J,(z) is the field-aligned component of the current denmsity.

The Fourier transform of the current can be written as

EACIDES ¢ LRI IRACID) el(kzZ=ut) g 0, (A-2)

In order to calculate the radiated power from a group of charges, a
transformation must be made to a frame of reference moving with the

charges. 1In this frame, the current density becomes independent of

time:

Jz(z,t) = Jz(z") .
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And, consequently, the current density appears stationary. The new
coordinate z' is defined as z' = z -Vgt, where Vg represents the

velocity of this moving frame. Expression (A-2) is then

j&fE,m} = ?E%Tr _z szz'} alkzz’ dz'_z Ei{kzvﬂqw}tdt " (A-3)

-] L]
The guantity f Ja(z") Eikzz dz'=/2n J,(k,) where J,(k,) is the Fourier

transform of J(z'). Using the definition of the delta functionm,
e

—

dt = 2r 8(k,Vs-w), and using the Fact that k, =

%Ecus 8, (A-3) now becomes

EE(E,M} E-KEET? (JE; Jz(kz]} §(nw cos 88 - w) (A-4)

where B = Vg/c.

Using Equation (4-6), the electriec field is written as

B(T,0) = oy J) (F18) (/77 3 (k)
[a]

(A-5)

}Ei(mt—k-r}dE dw

G(nwcos BF — w o

Knowing the electric field and source current, an expression for

the radiated power can be obtained:
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P(t) = [ ECr,t)~I(x,t) dc

= e I G (3 3, _—
o
§(nuwcos 8 B - w) ei(mt_kzzz',:z{z,t]dz d_f%

where the current is again deseribed by (A-1). Moving to the

frame z" = z - V;t, (A-6) can be rewritten as

B(t) = fz—éga [[] GeF=1e2) (/27 3 (k)

i(w-nw cos 8 B)t

(nw cos 8 B - u) e {(A=7)

-ikza"

" " — dw
[Jz(z.}e dz"] dkm— :

The quantity in brackets is equal to V27 Jo*(k,) where J,*(k,) is the

conjugate Fourier transform of J(z"). The element dk is

- 3
dk = n? %3— dn sin © d6 d¢ and
x = 1 _cos 8 w

; = = kz{n,E} .
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Substituting these into (A-7) and integrating over ¢ yields:

P(t) = rgryze [] (2+F102) (21)3,(k,(n,0))
]

J,*(k,(n,0)) é(nw cos 8 B - w) (A-8)

Ei{m-n w cos @ E)tnzmﬂdn sin 8 d8 du .

Integrating over 8, an integral of the form

f{xa)
I=/ f(x) 6(Ax - B)dx = 1
must be solved where A = |n w B|, B = w and Xy = cos By = E%'

The radiated power then becomes

P(t) =-{-m-}§:53-§ [f (G+T-142) (2m)3 (K _(n,6_))
(A-9)

J*(k,(n,8,)) |n| ]ul dn dw a

An expliecit form for (z-f‘l-z} is obtained using Equation (4-34), and

upon obtaining the imaginary part to the integral

@ Taaln) |n| E(n) dn
33 i 2 i
£ (-1} T33(nk} f{nk]

{nzﬂnf}(nz-ngj - Efng-n%} L=1
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where f(n) is an arbitrary even with no singularities, the radiated

power becomes

2

I T,,(n
z -
€,8,¢°V. 7 (ng-n%) =1 337k

p(e) =% = | (5
(A-10)

x [21 Jp(kp(ny,80))Tz*(kz(ny,84))] 4

Note that the radiated power is proportional to the square of the
Fourier transform of the current density. Once the current density
and its transform are known, it can be used in Equation (A-10) to
easily calculate the radiated power.

As an example, the radiated power from a single field-aligned
point charge moving at velocity, V,, can be calculatedT Moving to a
frame where the particle is considered stationary, Vg = V4, the

current density becomes
JZ(Z} =q Uuﬁ{z = 20),

where 2z, represents the position of the particle relative to the
center of coordinates for the frame moving at Vg. The current density

transform becomes

qV i M cos 6 2

i ik
[ 8(z - zD)E 2%24z = q v_ =
V2 == ° Y2n

Jzikz} "
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where kz = pu €08 8. Using Equation (A-4), gq(E,m} is

9V, 109cos 8z

T(E,M}=Ewe “G(nmcnsﬁﬂ-m}

and is identical to (4-13). Since Jz(k;) Jz*(k,) = 1/2w, the radiated

power is

2mdw o 1 2
- | [Bw ) @) Gz (k) Tt

which is identical to (4-22).
The power radiated from N point charges all moving at velocity
Vos but located at arbitrary positions along a field line can also be

calculated. Again, Vg = V,, however, the current density is now
(2)=qv I
Jp(z) = q V iEI (z - 24) )

where zj is the particle position relative to the center of

coordinates of the frame moving with Vg. The transform becomes

=]

4 ik.z

o E--1
f 8(z - zy)e %4z
—=

-
Il =
—

:q

— |

Jz(kz} =



v v oo
_ 1Y, N ikyzy _ - E Ei —— cos 8 zZ;
Jig  i=1 /o i=1
and
n w B
qV N -1 = cos zj
I #(k)=—= L —— .

Jap 3=l /27

The quantity

qV N M i%cnaﬂ(z*z)
I e . J

L
2 4=1 j=1

Jz(kz} Jz*(kz} =

Inserting this into Equation (A-10) yields a result identical to that
of (4-37) for By = By (Vig = Vio)-

A surprising result is obtained for the radiated power if the
beam density is completely uniform. In this case, the particles are
moving at wvelocity, V,; thus, Vg = V,. The current density is

.. 5 [
le:z} =q ‘EFu T: = q 'F.Fulﬂ -

The transform is then

= ik.z n w
= = = = g
Jz(kgﬁ q vulu f e dz q ?Dlnﬁsz} q Vuhuﬁf ~—COS 8)
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and Jz*(kz) = g Vulnﬁﬁg—ﬂ cos B8). After substituting these into
(A-10), it is found that radiation only at w = 0 is possible and
consequently the radiated power is zero. Therefore, an unperturbed,
uniform beam moving at velocity V, along a magnetiec field will not
radiate.

Finally, the power from a pulsed electron beam is considered.
Using Equations (74), (76), (77) and (78) from Harker and Banks

[1983], the Fourier transform of the field-aligned current is

S o z imk,d
= -— ol =
J(k,w) (¢TI 8(k V- w) N& sinc () mE e

where £ is the pulse length and d is the distance between pulses.

Comparing this with Equation (A-4), J,(k;) is obtained:

kil = w
J(k)=qV LU sine(=—) I e Lmkzd
z' Z o W 27 m=—w
and Jz*(kz] is
k 2 &

N
Jz*{kz} =q ?0-——5 sinn¢§%~ 3 & el
Vin ==
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The quantity

2

g imkyd

k
sincz{ié y
mm

2 g2 N222
* =
Jz(kz) Jz (kz} 9 vu 27

where p is the number of pulses. Since

2 sinzfpdszz}
sinz(dszz} !

Jz{kz) Jz*{kz} is

k_% sin(pdk_/2)
H 2 z z 2
J (k) J*k)=[qV — sinc (+—) .
2z z z o Ner 27 Ein(dszz:ﬁ

Inserting this into (A-10) yields an expression for the radiated power

similar to Equation (91) of Harker and Banks.
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