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Abstract The Mars Advanced Radar for Subsurface and Ionosphere Sounding on board the Mars
Express spacecraft measures the frequency of local plasma oscillations, which can be used to determine
electron densities local to the spacecraft. This paper provides an overview of electron densities in the upper
Martian ionosphere, obtained by investigating over 400,000 ionograms, during the course of about

11 years, corresponding to a full solar cycle. The data cover wide latitude and longitude ranges, 180° of
solar zenith angle (SZA), and altitudes from about 250 to 1,550 km. The electron density profiles show
large fluctuations within each orbit and also for any given altitude and SZA range. However, the median
electron density is almost constant on the dayside at a fixed altitude range, with the exception of a dip at
around 30° SZA, at altitudes between 300 and 600 km. A sudden drop in density is observed as the
terminator is approached from the dayside. For a fixed SZA range, the median electron density decreases
exponentially with increasing altitude. The high-altitude scale height is composed of two exponential
functions of SZA joined near the ionospheric terminator. The e-folding height changes between 45 and
214 km from the subsolar point up to 120°, corresponding to effective temperatures between about 165 and
780 K. Solar activity has a clear effect on the median electron densities above 500 km and on e-folding
height. The median electron density is higher during northern winters, as well as above regions of strong
crustal fields on the dayside.

1. Introduction

The Mars Express (MEX) spacecraft, which is in an eccentric orbit around Mars, has been providing
valuable data since 2005 (Chicarro et al., 2004). The low-frequency radar MARSIS (Mars Advanced
Radar for Subsurface and Ionosphere Sounding) is one of the six instruments on board MEX (Picardi
et al., 2004). MARSIS provides electron densities in the ionosphere through radar sounding, as well as
local electron densities through the excitation of electron plasma oscillations (Gurnett et al., 2005). In
this study, we give an overview of the electron densities of the upper ionosphere of Mars (altitudes
between ~250 and 1,550 km) with 11 years of local plasma density from plasma oscillations. This work
presents the seasonal, solar cycle, and crustal field effects on the electron densities in the upper
ionosphere of Mars. It also extends the study provided by Duru et al. (2008), which was performed with
2 years of MARSIS data.

The ionosphere of Mars has been studied with different techniques. Radio occultation measurements, which
utilize the phase shift of a radio signal that propagates through the ionosphere to determine the column elec-
tron density (Schunk & Nagy, 2009), provide information about the ionospheric density and structure.
Studies by Kliore et al. (1965), Fjeldbo et al. (1966), Zhang et al. (1990), Patzold et al. (2005), and others utilize
this method. The first direct ion measurements in the Martian ionosphere came with analyzers on Viking 1
and 2 (Hanson et al., 1977). Since 2015, The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission
(Jakosky et al., 2015) has been providing valuable information about the plasma environment of Mars.
Ergun et al. (2015) provided first in situ electron temperature profiles, along with electron densities mea-
sured with Langmuir Probe and Waves instrument on MAVEN. Nightside density and temperature mea-
surements from Langmuir Probe and Waves are reported by Fowler et al. (2015).
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2. Data

In this study, we use local electron densities obtained from plasma oscil-
lation harmonics (Duru et al., 2008). In ionospheric sounding mode, the
MARSIS transmitter excites electrostatic oscillations at the local plasma

Figure 1. Altitude and SZA coverage of the data with color bars represent-

ing the electron density.

T
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g frequency surrounding the spacecraft. Due to the high intensity of the

e §U electron plasma oscillations, the received waveforms are often severely

2 clipped introducing harmonics at multiples of fundamental plasma

w“g frequency. The spacing between the harmonics then provides the local

- electron plasma frequency, even when the fundamental frequency is

lower than the lower limit of the frequency, 100 kHz. Once the electron

100 150 - plasma frequency, f,, is obtained the corresponding local electron

Solar Zenith Angle (SZA), deg density is found by using f, = 8,980\/ne, where f, is in hertz and n.

is in per cubic centimeter (Duru et al., 2008; see, e.g., Gurnett &
Bhattacharjee, 2005).

This study uses data obtained between September 2005 and June 2016,
corresponding to about six Martian years, about one solar cycle. The altitude and solar zenith angle (SZA)
coverage with color-coded electron density values is provided in Figure 1. The altitude range is between
~250 and 1,550 km. For the present study, local electron density data are available over the full range of
SZA, from 0° to 180°. The nightside ionosphere of Mars has been studied by Duru et al. (2011) using local
electron densities; however, the data were only available at SZA less than 150°. Beyond ~160°, data are avail-
able only at altitudes higher than 800 km. The SZA coverage changes with time: Coverage at low SZA is less
frequent later in the mission.

In this study, more than 1,300 orbits have been studied. The electron density for each pass is plotted as a
function of universal time. Every orbit shows the expected trend: the electron density is low at high altitudes
and increases as the spacecraft approaches periapsis. As the spacecraft ascends, the electron densities
decrease. The electron density fluctuates during each orbit, with timescales ranging from a few seconds to
minutes (Gurnett et al., 2005, 2010). Fluctuations indicate electron density changes of more than 1 order
of magnitude in a few seconds in about 40% of the passes. The density profile is smoother in 60%.
Electron densities show orbit-to-orbit variations, too. Orbit-to-orbit and within-orbit variations in the neu-
tral densities and temperatures, as well as in the ionosphere, are noted by Bougher, Jakosky, et al. (2015)
in MAVEN data, as well.

It should also be noted that when the spacecraft is in the solar wind instead of the ionosphere the harmonics
of electron plasma oscillations are not observed (Duru et al., 2008; Duru et al., 2010). As a consequence, in
many passes the electron plasma oscillations are not observed at high altitudes and this altitude, which
marks the boundary between the ionosphere and solar wind, is SZA dependent.

3. Electron Density Profiles as a Function of SZA

The behavior of the electron density with changing SZA is examined with a series of plots in Figure 2,
where electron density is plotted as a function of SZA. As stated, the electron plasma oscillations are
not observed when the spacecraft is in the solar wind. So the density value is recorded as 0 for those
regions. This does not necessarily mean that the density is 0; it means that it is undetectable. To correct
for this bias, instead of using averages, we plotted the median values including zeros, as a function of SZA
for a series of fixed altitude ranges, as shown in Figure 2. In this figure, a series of such plots for the alti-
tude ranges between 200 and 300, between 300 and 400, and between 1,100 and 1,200 km are shown. The
results mostly confirm Duru et al. (2008) and are also consistent with simulations provided in the same
paper. At low altitudes, as seen in Figure 2a, the median electron density is almost constant on the day-
side. Due to the fluctuating nature of data, it shows small variations. Around the terminator, the electron
density decreases abruptly. The median density is ~4,000 cm™ up to ~75° between 200 and 300 km and
drops to ~200 cm™ at around 110°.

As the altitude increases, the median electron density decreases. However, constant density on the day-
side with sudden decrease around the terminator can still be observed up to about 800 km. From
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Figure 2. Median electron density as a function of solar zenith angle for
three different altitude ranges: (a) 200-300 km, (b) 300-400 km, and (c)
1,100-1,200 km. Error bars show upper and lower quartiles for a given solar
zenith angle range.

~800 km, the electron densities on the dayside become so low that the
difference with the nightside becomes very small. In Figure 2c, for
example, the median density in the altitude range between 1,100 and
1,200 km is almost always less than 100 cm™>. A small increase is
observed for SZAs above 150°. At low SZAs the shocked solar wind
boundary penetrates deeper, leading to zero density medians at high
altitudes, as seen in Figure 2c. Figure 2 also provides the upper and
lower quartiles (25th and 75th quartiles) to show the extent of fluctua-
tions for a given SZA value. The upper and lower quartiles are very dif-
ferent, in some cases having more than 1 order of magnitude between
them, implying large fluctuations.

A dip in the density at around 25° SZA is observed at altitudes between
300 and 500 km. A similar trend could be seen in the data shown in
Figure 9 of Duru et al. (2008), albeit with lower amplitude. It should be
noted that the dip is inside the error bars of that SZA range, but it is only
observed at this altitude and SZA range. A similar dip, this time in tem-
peratures of Ar, CO,, and O at altitudes between 200 and 300 km was also
seen in Mahaffy et al. (2015).

4. Electron Density Profiles as a Function of Altitude

To obtain a better understanding of the behavior of the electron densities
in the upper Martian ionosphere, we investigate electron density versus
altitude for fixed SZA ranges. Figure 3 presents the median electron den-
sity as a function of altitude for six 30° SZA ranges, where the median is
calculated for every 15-km altitude bin. The median density decreases
with increasing altitude up to 120°. The density is low on the deep night-
side and does not vary significantly with altitude. At high altitudes above
the dayside and flanks, an increase is observed in the density. This
increase is dependent on the SZA range (above 500 km for 0-30°, around
1,500 km for 30-120°). For SZAs between 30° and 60°, an increased den-
sity is still present at altitudes higher than 1,500 km. This region includes
elevated electron density values from May 2012, during which some solar
flares were observed.

Again, to correct for this bias and to have another point of view to the
data, we plotted the median values including the data points where no
plasma harmonics were detected. As the SZA increases, the height of
the shocked solar wind boundary increases, leading to more nonzero
data at high altitudes for high SZAs. In Figure 4 the median value is
given by the blue dots. At altitudes above 500 km the median electron
density is 0 for the 0° to 30° SZA range. Figure 4 also includes the lower
(green points) and upper quartiles (red points). Again, the fluctuations
at a given altitude result in a difference of more than 1 order of magni-
tude in many SZA and altitudes.

5. The High-Altitude Plasma-Scale Height

The median values of the density on Figure 4 can be used to estimate the
plasma-scale height. We have done exponential fits on the segment of the

median values to obtain the function of high-altitude plasma-scale height as a function of SZA. The 25th and
75th percentiles were used to estimate upper and lower values of the scale height with the average of these
values taken as an uncertainty on the measurement. Figure 5 gives the results of this analysis. We see that
the scale height as a function of SZA is well described as an exponential function given by
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Figure 3. Median electron density, in logarithmic scale, as a function of altitude for six different solar zenith angle ranges.
logy, (H, [km]) = 1.516 + 0.007611xSZA ().

Note that for the ionosphere, the effective terminator is usually assumed to be 107°. We chose to present data
up to 105° since the nightside region is dominated by impact ionization and/or transport from the dayside.

The e-folding height changes between about 45 km (at SZA between 0° and 30°) and 214 km (between 90 and
120 km). Assuming the plasma-scale height is given by the e-folding height, we calculate the corresponding
effective temperatures using H,, = 2kT/mg (Schunk & Nagy, 2009). Assuming that O* is the main ion species
at the altitudes of our interest and neglecting the gravity variations with the altitude, the effective plasma
temperatures in the ionosphere are calculated to be between about 165 and 780 K between subsolar point

and 120°.
6. Solar Cycle Dependence of Electron Densities

The Sun's activity shows a cyclic behavior, with a period of 11 years. In this period the sunspots, solar
radiation, and appearance of the Sun change. In particular, variations in the intensity of ionizing solar
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Figure 4. Median electron density (blue dots) as a function of altitude. The 25th and 75th percentiles are shown by the
green and red dots, respectively.

flux during a solar cycle result in density variations in the ionospheres of the planets. There have been
studies on the density changes in the Martian ionosphere. However, most of these studies considered
only a partial solar cycle (Morgan et al.,, 2008; Fox and Yeager, 2009; Withers and Mendillo, 2005).
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Figure 5. Linear model of the high-altitude scale height based on slopes
from Figure 4, along with the error bars.

Recently, Withers et al. (2014) studied the variations in the peak elec-
tron densities in the ionosphere of Mars over a full solar cycle, using
the combined data from two spacecraft, Mars Global Surveyor and
MEX, concluding that the ionospheric peak electron density increases
smoothly as the Fj,; value increases up to 130 units. However, the data
were very scattered. Lundin et al. (2013) showed that the average ion
escape rate increases by a factor of 10 from solar minimum to solar
maximum. Bougher, Pawlowski, et al. (2015) used a Mars Global
Ionosphere-Thermosphere Model (M-GITM) and showed that the solar
cycle and solar rotation timescales have significant effects on the com-
position, temperature, and global wind structure in the upper atmo-
sphere of Mars. Sanchez-Cano et al. (2016) concluded the solar cycle
has a clear effect on the neutral scale height, which is an important
parameter in describing the density distribution in the ionosphere.

In this paper, we provide observations on the electron density variations
in the upper ionosphere for over 11 years of data, which corresponds to

about one full solar cycle. Our data start in 2005, toward the end of solar cycle 23 (see the Space Weather
Prediction Center webpage). The current solar cycle, solar cycle 24, began with a minimum on January
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Figure 6. (a) Median electron density as a function of time for the altitude
range 800-900 km and SZA range between 30° and 60°. (b) Median elec-
tron density as a function of time for the altitude range 800-900 km and SZA
range between 30° and 60°. (c) Solar irradiance at 30.5 nm from
Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics—Solar
EUV Experiment scaled to Mars' distance.

2008 and continued with minimum activity until early 2010. It showed
two maximums: in 2011 and in 2015, after which the solar activity is
slowly decreasing (see http://www.swpc.noaa.gov).

For specific SZA and altitude ranges, we plotted median electron den-
sity as a function of time. Figures 6a and 6b are plots for the ranges
of 800-900 km and 30-60° and 500-600 km and 60-90°, respectively.
The median electron density shows a slight increase during the solar
maximum times. However, there are almost periodic dips and peaks
in the data, which appear to be correlated with EUV solar irradiance
at a wavelength of 30.5 nm from the Thermosphere, Ionosphere,
Mesosphere Energetics and Dynamics—Solar EUV Experiment scaled
to Mars distance (Figure 6¢). The variations in solar irradiance with
an approximate 2-year period, seen in Figure 6c, are due to the annual
variation in Mars distance from the Sun. Because of the changing dis-
tance of Mars, the data in panel c there are five main peaks, which
are periodic, with maximums at mid-2005, mid-2007, mid-2009, mid-
2011, and mid-2013, and five periodic dips with minimums at mid-
2006, mid-2008, mid-2010, and mid-2012. Even with these fluctuations,
it is possible to notice the slightly increasing trend of the solar irradi-
ance moving from solar minimum to solar maximum. These dips and
peaks correspond to or are followed by the ones observed in
MARSIS data.

As seen in the coverage plot, Figure 1b, the data coverage is not homoge-
neous throughout the time. We mostly focused on the altitude and SZA
ranges where we have data for all 11 years. Since the main driver for the
electron density on the dayside is photoionization, the solar cycle is
expected to affect the dayside densities. Even though expected otherwise,
the effect is less obvious at altitudes lower than 500 km. Previous studies
showed that precipitating electrons are important factors in sustaining
the nightside ionosphere, as well as day to night plasma transport
(Fowler et al., 2015; Girazian et al., 2017; Zhang et al., 1990). A similar
but diminished trend, not shown here due to insufficient data, has been
observed on the nightside.
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effects of crustal magnetic fields, the data from the region of strong crustal
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7. Scale Height as a Function of Solar Cycle

It is interesting to use our abundance of plasma density data to gauge the
effect of solar cycle on plasma-scale height. To do this, we have sampled
the electron density for one Mars year (687 Earth days) starting 2008,
around solar minimum, and starting 2013, around solar maximum. For
these two samples we have restricted the SZA to the range 30-60° and
the local time to the range 13-17 hr. The results are shown in Figure 7
(part a for solar minimum and part b for solar maximum). Around solar
minimum we find a single consistent scale height of 47.7 km, correspond-
ing to an effective temperature of about 175 K. Around solar maximum we
find a distinct boundary, at approximately 800 km, between two physical
regimes. This dual-scale height regime implies that near solar maximum
there is a temperature boundary at around 800 km, corresponding to the
approximate altitude of the magnetic pileup boundary at these SZAs
(Vignes et al., 2000). The ionospheric plasma-scale height is computed
to be 244.7 km, corresponding to about 895 K.

8. Seasonal Dependence of the Electron Densities

Mars experiences all four seasons with more variations than on Earth. The
seasons on Mars are strongly affected by the distance from the Sun to
Mars. Northern summers are cooler and northern winters are milder
due to the eccentricity of the orbit. The seasons in the southern hemi-
sphere are more extreme. Seasons affect the temperatures, exobase height,
electron density, O density, and ion peak density in the ionosphere
(Valeille et al., 2009). Yamauchi et al. (2015) show that the occurrence rate
of pickup ions increases during orbital summer, around Mars perihelion.
More recently, observations of Solar Wind Ion Analyzer on board the
MAVEN spacecraft by Halekas et al. (2017) confirm strong seasonal varia-
tion of the hydrogen corona. According to Rahmati et al. (2018), the
MAVEN data show that the H escape rates are about 1 order of magnitude
higher near perihelion than that of aphelion.

Figure 8 shows the median density as a function of SZA for different sea-
sons for the northern and southern hemispheres combined. However, to
minimize any effect due to crustal fields, we excluded the southern hemi-
sphere longitudes between 150° and 240°. The blue data are for solar long-
itudes between 0° and 180° corresponding to northern spring and
summer, and red is for longitudes between 180° and 360° corresponding
to autumn and winter in the northern hemisphere. The southern hemi-
sphere data are also included in the plots by reversing the seasons. The
top panel is for the altitude range between 300 and 400 km, and the bot-
tom one is for between 400 and 500 km. As can be seen from the plots,
the median electron densities are higher for the winter for most of the day-
side. This is consistent with the findings of Morgan et al. (2008) who
showed that the average subsolar peak electron density is higher near
the southern summer solstice, about 1.8 X 10° cm ™ and lower near the
northern summer solstice, about 1.4 X 10° cm™>. This trend continues
only a couple hundred kilometers. After about 500 km the relationship
is not observed anymore. Even though the data on the nightside is scarce,
we can say that the same trend is not true for the nightside. It is worth not-
ing that even when the strong crustal field regions are not excluded, the
behavior of the median density as a function of seasons is very similar
but less pronounced.
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reduces total ionization but increases the area of ionization. Fang et al.

(2017) performed magnetohydrodynamic simulations, which showed that
’ boundaries are affected by the global crustal fields.

. Figure 9 displays median electron density as a function of SZA for fixed
altitude ranges for two different regions on Mars: the northern hemi-
sphere (blue dots), where the crustal fields are weak or nonexistent; and

1000

latitudes lower than 0° and longitudes between 150° and 240° (red dots),

1100-1200 km

100+ ¥ !

Electron Density, cm-3

10 T
50

where the crustal fields are very strong. The top panel is for altitudes
Blue: Weak crustal fields between 300 and 400 km, the middle panel is for 600-700 km, and the bot-
Red : Strong crustal fields tom panel is for between 1,100 and 1,200 km. There is a very clear depen-
dence of the median electron density on the crustal magnetic fields; On

i the dayside, the median electron density is higher above the strong crustal
U ' field region. This is valid up to about 1,200 km, after which the effect can-
I not be observed anymore. The crustal fields are shown to be providing a

shielding effect from the solar wind interaction and decrease the ion

escape rates (Dong et al., 2015; Nagy et al., 2004). Also, multispecies

| | ! single-fluid magnetohydrodynamic model results performed by Ma et al.
100 150 (2014) show that the heavy ion densities are enhanced in the regions of

Solar Zenith Angle, deg high crustal fields, which supports our results.

Figure 9. Median electron density as a function of SZA for the data from the ~ On the nightside, the weak field region has higher electron densities at
region with latitude above 0° and all longitudes (blue dots), latitude below  lower altitudes. However, since the electron densities are lower in general,
0°, and longitudes between 150° and 240° (red dots) for 300-400 km (top  the difference is not as prominent as on the dayside. Previous studies

panel), 600-700 km (middle panel), and 1,100-1,200 km (bottom panel).

showed that nightside electron densities are lower at low altitudes (below
180 km; Girazian et al., 2017). This is because strong crustal fields act as a
shield and reduce electron precipitation rates so that ions recombine without being replenished (Brain et al.,
2007; Mitchell et al., 2001).

10. Conclusions

Thanks to MEX's 13 years of operation, we have more than 11 years of data, which gives us the possibility of
making an extensive investigation on the electron densities on the Martian ionosphere, with an emphasis on
the solar cycle, seasonal, and crustal field dependence.

The ionosphere of Mars is very dynamic, with electron density values changing in response to many para-
meters (Mendillo et al., 2017). The electron density shows variability from orbit to orbit and also within
an orbit.

The observed SZA dependence of the electron density is compatible with previous studies and models. The
median electron density is almost constant on the dayside. It decreases sharply past the terminator at low
altitudes. At altitude above about 800 km, there is no difference between dayside and nightside.
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The median electron density increases with decreasing altitude. The dependence is exponential with an
e-folding height between 45 and 214 km between the subsolar point and 120°, corresponding to temperatures
between 165 and 780 K. It is on the order of thousands up to 150° of SZA, after which the exponential
increase is not observed. A model of the high-altitude plasma-scale height derived from the electron density
profiles of Figure 5 gives a result of an exponential function. Both dayside- and nightside-scale heights
increase with SZA, but the nightside scale height increases much more sharply with increasing SZA than
that of the dayside. Presumably cross-longitude plasma transport allows plasma generated by photoioniza-
tion to populate high altitudes.

The primary source of the dayside Martian ionosphere is the photoionization of the neutral atmosphere by
solar radiation. Increased solar irradiation means increased EUV flux, which in turn leads to higher rates of
photoionization. As a result, the median electron density depends on the solar activity. It is higher on aver-
age at solar maximum. During the northern hemisphere's summer the electron density is lower than the
northern hemisphere's winter.

Finally, the dayside median electron density is considerably higher over strong crustal field regions than it is
over weak field regions. The opposite is true on the nightside; the median plasma density is less in the high
crustal magnetic field regions than elsewhere. The reason for this divergence appears to be inhibition of dif-
fusion of ions by the strong magnetic fields. On the dayside, ions that are newly formed by photoionization
are inhibited from diffusing out of the strong field regions, causing higher densities than in adjacent regions
of weaker magnetic field. On the nightside, ion densities are depleted by recombination in the regions of
strong field. These recombined ions cannot be replaced through diffusion because of the strong
magnetic fields.
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