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[1] Electron phase space holes are analyzed in terms of solitary-wave solutions to the
nonlinear Vlasov-Poisson equations in a collisionless plasma. Width-amplitude relations
for one-dimensional and three-dimensional electron holes are derived to be inequalities
that allow existence of the holes in regions to one side of a bound. The theoretical origin of
the width-amplitude inequality is elucidated to show that the inequality nature is
independent of specific functional forms of the solitary potential and ambient plasma
distribution functions. Ion dynamics and effects of finite hole velocity and finite
perpendicular size are subsequently included. Finally, we show that the electron holes
reported by Franz et al. (2005) populate an allowed region in the solution space that is
significantly away from the bounding curve. These electron holes evidence the
accessibility of electron holes whose widths and amplitudes are only loosely constrained
and open up the possibility of spontaneous generation of phase-space holes in turbulent
fluctuations.
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1. Introduction

[2] Electrostatic solitary waves have been observed ubiq-
uitously in space [Temerin et al., 1982; Boström et al., 1988;
Matsumoto et al., 1994; Mozer et al., 1997; Franz et al.,
1998; Ergun et al., 1998; Tsurutani et al., 1998; Bale et al.,
1998; Kojima et al., 1999; Bounds et al., 1999; McFadden
et al., 2003; Pickett et al., 2003; Cattell et al., 2003; Pickett
et al., 2004a, 2004b, and references therein] and helio-
spheric [Mangeney et al., 1999; Williams et al., 2005]
plasmas. For the cases when the widths and amplitudes of
the solitary potentials can be determined experimentally,
phase space electron or ion holes are shown to be the best
candidates for the observed structures [Franz et al., 1998;
Ergun et al., 1998, 1999; Cattell et al., 1999; Bounds et al.,
1999; Franz et al., 2000; McFadden et al., 2003; Behlke et
al., 2004]. One-dimensional theories for electron holes have
different conclusions on the width-amplitude relation.
Among them are that the potential width must increase with
increasing amplitudes [Turikov, 1984; Muschietti et al.,
1999a, 1999b, 1999c], the width decreases with increasing

amplitudes for amplitudes much smaller than the plasma
thermal energy per charge (small-amplitude holes) [Schamel,
1979, 1986], and that the minimum allowed width increases
with increasing potential amplitudes [Chen, 2002], and
depends on the unperturbed distribution function for small
amplitude holes [Krasovsky et al., 1997, 2003].
[3] Lynov et al. [1979] performed the first laboratory

experiment on electron holes. Their measurements seemed
to support the result that the width increases with increasing
amplitudes [Turikov, 1984] but were not able to address the
width-amplitude relation in the small-amplitude limit due to
the very limited range of amplitudes that were realized. The
first space experiment that addressed the width-amplitude
relation was reported by Ergun et al. [1998]. They showed
that the width increases with increasing potential amplitudes
in a range of 0.05–0.7 plasma thermal energy per charge for
solitary positive potential structures. Ergun et al. [1998]
concluded that the observed structures are electron holes.
This conclusion was based on the prediction that the width of
one-dimensional (1-D) electron holes increases with increas-
ing amplitudes [Muschietti et al., 1999a, 1999b]. The
behavior of increasing widths for increasing potential ampli-
tudes was found to also occur for large-amplitude rarefactive
ion and electron acoustic solitons [Ghosh and Lakhina,
2004a, 2004b].
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[4] Krasovsky et al. [2003] derived a minimum allowed
width for small-amplitude 1-D electron holes. The mini-
mum allowed width they obtained increases with increasing
potential amplitudes and decreases with increasing phase-
space density of unperturbed electrons that move at the
electron hole velocity (called ‘‘the distribution function in
resonance’’). The explicit dependence on the distribution
function is due to that the authors did not solve the coupled
Vlasov-Poisson equations exactly but resorted to an ap-
proximate approach. The derived restriction on the distri-
bution function and potential amplitudes and widths was
compared with solitary waves observed by the Geotail
spacecraft [Kojima et al., 1999] to show that the observed
solitary waves satisfy the restriction at a rather low value of
the distribution function in resonance. The Geotail wave-
form instrument cannot determine the wave velocity. It was
assumed that the solitary potentials are positive and that
they travel at the same velocity as the electron beams
measured by the plasma instrument on Geotail [Kojima et
al., 1999]. The comparison between the Geotail observation
and Krasovsky et al.’s [2003] theory provides a good hint
that electron holes may not follow one-to-one width-ampli-
tude relation, in contrast to the finding based on the FAST
observation [Ergun et al., 1998; Muschietti et al., 1999a,
1999b]. However, the incapability of Geotail to experimen-
tally determine whether the observed solitary waves are
electron holes and their propagation velocities, along with
the limitations on the theory by Krasovsky et al. [2003],
prevents any conclusive statement to be made on the width-
amplitude relation of naturally occurred electron holes.
[5] Theories on 3-D electron holes without ion dynamics

[Chen and Parks, 2002a, 2002b] and with ion dynamics
[Chen et al., 2004] and on ion holes [Chen et al., 2004]
have obtained sets of inequalities that constrain the potential
amplitude and the widths parallel and perpendicular to the
background magnetic field. It has been pointed out that the
most distinguished feature of electron and ion holes is that
their potential widths do not have to increase or decrease
with increasing amplitudes but rather can take any contin-
uous values above a bound that increases with increasing
amplitudes and can be of sub-Debye scale [Chen et al.,
2004]. The ubiquity of electron holes and ion holes was
attributed to this continuum of allowed parameter space.
This feature distinguishes phase-space-hole solitary waves
from all other known solitons, as the widths and amplitudes
of other solitons are of 1-1 mapping relation [Drazin, 1983].
Experimental evidence for electron holes whose widths and
amplitudes reside in the allowed region but not on the
bounding curve or bounding surface has been lacking until
the work by Franz et al. [2005]. This, in part, is due to the
absence of knowledge on how the bounding curves would
vary with experimental parameters such as the electron hole
velocity, the ion and electron temperatures, and the perpen-
dicular size of electron holes. In this paper, quantitative
analysis on the modification of the bounding curve due to
various effects will be presented.
[6] The organization of the rest of this paper is as follows.

In section 2, we discuss the theoretical origin of the width-
amplitude inequality of 1-D electron holes and derive a
coarse but unbreakable bound that is independent of ambi-
ent plasma distributions and solitary potential forms. Next,
we obtain an exact width-amplitude inequality for 1-D

electron holes neglecting ion dynamics and finite hole
velocities in section 3. We then show in section 4 how the
inequality is modified separately by the inclusion of ion
dynamics and effects of finite perpendicular size (3-D).
Section 5 presents the results for finite hole velocities, while
section 6 illustrates the signatures in distribution functions
of electron holes. In section 7, we demonstrate that the
observed 3-D electron holes reported in the work of Franz
et al. [2005] populate an allowed region significantly away
from the bounding curve and thus represent a strong
evidence for the accessibility of loosely constrained electron
holes. We discuss the impact of the existence of loosely
constrained electron holes in section 8. Finally, we summa-
rize and conclude in section 9.

2. Origin of Width-Amplitude Inequality

[7] Electron phase space holes are localized potential
humps that are self-consistently sustained by electrons
bouncing back and forth inside the potential energy trough
and by electrons and ions streaming into and out of the
potential structure in a collisionless plasma. The lack of
binary collisions preserves the total energy of each particle
and prevents the mixing of electrons that are trapped
(bouncing inside the potential) and those that are passing
(streaming into and out of the potential). The potential
hump originates exclusively from the collective electric
field of all electrons and ions, and this collective field in
turn determines how electrons and ions are distributed in
phase space. This coupling between the mean field of the
plasma particles and the distribution functions is described
by the nonlinear Vlasov-Poisson equations.
[8] Electron and ion phase space holes are solitary wave

solutions of the nonlinear Vlasov-Poisson equations that
involve trapping of only electrons and ions, respectively.
They are also called Bernstein-Greene-Kruskal (BGK) sol-
itary waves [Bernstein et al., 1957], as Bernstein, Greene,
and Kruskal were the first to obtain the exact, time-station-
ary solutions for the 1-D nonlinear Vlasov-Possion equa-
tions. In the original BGK work, it is recognized that in
theory collisionless plasmas can support quite arbitrary
potential forms in one dimension by distributing plasma
particles that are trapped inside the potential energy troughs.
The only constraint is that the number of trapped particles in
any differential phase space volume cannot assume negative
values (ftr � 0). As the authors remarked themselves,
whether these waves can be found in reality depends on
factors that are not considered in their paper which include
the accessibility and stability of the waves. Because the
BGK work provides only general solutions, it was not clear
how arbitrary the potential forms can be and how the
constraint on the trapped particle distribution should trans-
late to a constraint on macroscopic variables such as the
potential width and amplitude.
[9] We can obtain an intuitive understanding for why

there exists a width-amplitude inequality for electron holes
based on the following simple consideration. When there is
a solitary potential hump, the responses of passing electrons
and ions are known. Electrons from outside the potential
hump would speed up and then slow down as they pass
through the hump. Ions would either be reflected if their
total energy is not sufficient to overcome the potential
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energy barrier or slow down and then speed back up as they
pass through the hump. As the velocity profiles of passing
electrons and ions are known, their density profiles are
known. The question is whether one can find a way to
distribute electrons inside the potential hump (or potential
energy trough) so that the hump is completely sustained by
the plasma itself. In mathematical terms with dimensionless
units, we observe the following:

r ¼ �ntr � np þ ni

ntr ¼ �r� np þ ni � 0;
ð1Þ

where r is the dimensionless total charge density due to the
localized potential hump, ntr is the number density of
electrons trapped inside the potential hump, np is the density
of passing electrons, and ni is the ion density. No number
densities can take negative values, thus one must have ntr �
0. Where the potential is zero (r is zero), we normalize the
unperturbed densities np = ni = 1.
[10] The most severe constraint in equation (1) occurs

where r is the most positive, which occurs at the peak of the
potential hump. By the Poisson equation (r = �@2f/@x2),
Max(r) scales as y/d2, where y is the peak amplitude and d
the spatial width of the potential. For simplicity, we neglect
ion dynamics and only note that ni would become less than
1 inside the potential (this would become evident in later
treatment where ion dynamics is included) and hence ion
dynamics would not change the qualitative nature of the
width-amplitude relation. The last part of the above inequal-
ity hence becomes

Max rð Þ � y=d2 � ni � np � 1� np < 1 �! d >
ffiffiffiffi
y

p
;

where we have used the important fact that the passing
electron density within the potential is always less than its
ambient value (unity) as their velocities are always larger
than the ambient values. We thus see from the above how
the requirement of a nonnegative trapped electron density
everywhere inside the potential translates to an inequality
between the potential width and amplitude. Note that in the
above argument, specific forms of the potential and the
passing electron and ion distribution functions are not
given. Therefore the fact that the width and amplitude of
electron holes are constrained by an inequality is indepen-
dent of specific potential and distribution functions. The
above simple consideration gives us a coarse bound on the
allowed potential amplitude and width: the width has to be
greater than

ffiffiffiffi
y

p
. This bound on the minimum allowed

width increases with potential amplitude y.
[11] It is important to note the underlying reason for

the distinction between the width-amplitude relations for
phase-space hole solitary waves and fluid solitons. Fluid
solitons in a plasma, such as acoustic solitons, are based
on nonlinear equations of fluid quantities which involve
further reduction of degrees of freedom from the Vlasov-
Poisson description, that is, integrating distribution func-
tions to obtain fluid moments. For phase space holes,
there is no such reduction of degrees of freedom, and
therefore they are more general forms of solitary struc-
tures in a collisionless plasma than fluid solitons. The

reduction of degrees of freedom results in the strict 1-1
mapping relation between the spatial size and potential
amplitude of fluid solitons. Furthermore, fluid solitons
can only assume scale sizes in fluid scales. For example,
their sizes have to be larger than the Debye length which
is the characteristic scale length for local equilibrium
[Debye and Hückel, 1923; Jackson, 1990] and the small-
est length at which the plasma can behave like a fluid
[Bohm and Gross, 1949]. On the other hand, phase-space
holes are intrinsically nonlinear and nonequilibrium. Their
existence relies on the lack of efficient mechanisms to
equilibrium, namely, lack of effective binary collisions.
The screening of the positive charge core of a 1-D
electron hole is accomplished exclusively by electrons
trapped inside the potential structure, and not by thermal
(Debye) screening [Chen and Parks, 2002b; Chen et al.,
2004]. The size of electron holes therefore is not restricted
to be larger than the Debye length, insofar as the Vlasov-
Poisson equations are still applicable. In a plasma with
lD = 500 m and a density 0.5 cm�3, (typical for the
polar plasma sheet boundary, the region where events in
Figure 10 were taken), there are of order �106 particles
in a phase-space hole solitary wave of width �0.01 lD.
This is well within the applicability of the Vlasov
description.
[12] The existence of width-amplitude inequalities for

phase space holes depends crucially on the dimensionality
of the velocity space. It has been analytically shown that
for an isotropic unmagnetized plasma, if the velocity
space is two- or three-dimensional, there do not exist
fully localized time-stationary solutions to the nonlinear
Vlasov-Poisson equations [Chen, 2002]. The reason is
that in 2-D and 3-D unmagnetized plasmas, the passing
particle density does not decrease with the potential
amplitude, and the plasma cannot self-consistently support
the charge core according to the Poisson equation. The
lack of BGK solutions was thought to be the reason for
the short lifetime of 2-D and 3-D electron holes in zero
magnetic fields observed in simulations performed by
Morse and Nielson [1969]. Similar discussions from a
different perspective can be found in the work of
Krasovsky et al. [2004]. Exact 3-D electron hole solutions
were constructed in three spatial dimensions, while keep-
ing the velocity space one-dimensional, that is, for 3-D
magnetized plasmas with negligible cyclotron radius
[Chen et al., 2004]. A more in-depth analysis on the
effects of velocity space dimensionality will be published
elsewhere [Chen et al., 2005].

3. One-Dimensional Width-Amplitude
Inequality: No Ion Dynamics and Zero Hole
Velocity

[13] In this section, we discuss characteristics of the
width-amplitude relation for 1-D electron holes that have
zero velocity in the ambient plasma frame. Ion dynamics is
ignored. Such a solution for the trapped electron distribution
function has been obtained by Chen and Parks [2002b] for
a Gaussian solitary potential

f y; d; xð Þ ¼ ye�x2=2d2 ; ð2Þ
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and Maxwellian distributed ambient electron distribution
whose density outside the solitary potential has been
normalized to 1 (the background ion density),

fp wð Þ ¼
ffiffiffiffiffiffiffiffi
2me

pffiffiffiffiffiffiffiffi
pTe

p e�w=Te ; ð3Þ

where w = mev
2/2 � ef. Note that in order to be formally

consistent with the following sections when ion dynamics
(and thus ion mass) is present, we have put back the
dimensions here as opposed to the dimensionless forms in
thework ofChen andParks [2002b]. In this and the following
sections, whenever dimensionless quantities are presented,
the energy unit is taken to be the ambient electron thermal
energyTe, the length unit is the ambient electronDebye length
lD =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Te=4pne2

p
, the charge unit is the unsigned electron

charge e, and the velocity is the ambient electron thermal
velocity. Here, we reproduce the trapped electron distribution
(apart from an overall coefficient involving the mass) from
Chen and Parks [2002b] as follows in order to obtain the
width-amplitude relation

ftr y; d;wð Þffiffiffiffiffiffiffiffi
2me

p ¼ 2
ffiffiffiffiffiffiffi
�w

p

pd2
1� 2 ln

�4w

y

� �� �
þ e�wffiffiffi

p
p 1� erf

ffiffiffiffiffiffiffi
�w

p� �	 

:

ð4Þ

[14] As discussed by Chen and Parks [2002b], the global
minimum of the above ftr occurs at w = �y, that is, the
trapped electron phase space density takes its minimum for
the electrons that are at rest at the peak of the potential
hump. Hence the condition ftr(w = �y) � 0 guarantees a
physical trapped electron distribution and results in the
width-amplitude inequality

d � 2
ffiffiffiffi
y

p
4 ln 2� 1ð Þffiffiffi

p
p

ey 1� erf
ffiffiffiffi
y

p
ð Þ½ �

� �1=2
: ð5Þ

We plot equation (5) for a range of allowed amplitudes and
widths in Figure 1. A point in the shaded region represents
an allowed electron hole with a given y and d. The shaded

region includes all of the allowed y and d for the range of
values shown. For a fixed d, all y � y0 are allowed, where
y0 is such that ftr(y0, d, w = �y0) = 0; while for a fixed y,
all d � d0 are allowed, where d0 is such that ftr(y, d0,w =
�y) = 0. From equation (5) we know that for 1-D electron
holes, at the level of no ion dynamics and zero hole velocity,
there are no absolute upper or lower bounds on the potential
amplitude and the width within the Vlasov-Poisson theory.
The Debye length is not a characteristic length for electron
holes. In fact, it does not even come into the formulation.
We only use it as a unit for lengths, analogous to the usage
of a centimeter as a length unit while a centimeter is by no
means characteristic to the object being measured.
[15] In the large-amplitude limit y 
 1, the widths and

amplitudes are constrained by d �
ffiffiffiffi
y

p
which coincides with

the coarse bound found in the previous section. In the small-
amplitude limit y � 1, the constraint is d � y1/4. This exact
bound obtained from solving for the trapped distribution is
only slightly tighter than the coarse bound. This comparison
with the coarse bound tells us how general the width-
amplitude inequality is; different functional forms of the
potential hump and passing electron distribution do not alter
the bounding curve much. For example, solitary potentials of
the formy sech (x/d)n, where n is a positive even integer, yield
the same width-amplitude constraints in both the small- and
large-amplitude limits [Turikov, 1984]. The equal sign in
equation (5) corresponds to the case of empty-centered
electron holes studied by Turikov [1984]. Figure 1 can be
compared directly to the figure in the work ofMuschietti et al.
[1999b] to see that our bounding curve is quantitatively
similar to their width-amplitude curve which was obtained
using a flat-topped passing electron distribution [Muschietti
et al., 1999a] and that the electron holes observed by FAST lie
closely on the bounding curve within error bars.
[16] We note that the bounding curve given by taking

only the equal sign in equation (5) corresponds to electron
holes with zero phase-space density at the hole center and is
where the largest electric field amplitudes occur. For a given
potential amplitude, the point on the bounding curve yields
the smallest allowed width, while for a given width, it gives
the largest allowed potential amplitude. In both cases, the
point on the bounding curve gives the largest electric field
amplitude. In simple terms, the farther away an electron
hole is from the bounding curve, the smaller electric field
amplitude it has. Therefore to uncover electron holes that
dwell deep inside the allowed width-amplitude space, it is
critical to resolve small-amplitude electric fields. The FAST
observation of electron holes clustering only on the bound-
ing curve [Ergun et al., 1998, 1999; Muschietti et al.,
1999a] is likely due to their emphasis on events with large
electric field amplitudes (�50 mV/m).

4. Effects of Ion Dynamics and Finite
Perpendicular Size

[17] In the context of 3-D electron holes, the width-
amplitude relation has been obtained by Chen et al.
[2004] incorporating ion dynamics for azimuthally symmet-
ric double Gaussian potentials,

F r; zð Þ ¼ y exp �z2=2d2z � r2=2d2r
� �

; ð6Þ

Figure 1. The width-amplitude relation for one-dimen-
sional (1-D) electron holes with zero hole velocity and no
ion dynamics. The curve and shaded region mark the
allowed widths and amplitudes for the plotted range. The
amplitude is normalized by the electron thermal energy per
charge, and the width by the electron Debye length.
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and Boltzmann-type isotropic ambient electron and ion
distributions,

fp wð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2me=pTe

p
exp �w=Teð Þ; ð7Þ

fi wð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mi=pTi

p
exp �w=Tið Þ; ð8Þ

where w = me,iv
2/2 + qe,iF(r, z). Here we outline their key

expressions for the trapped electron density ntr, trapped
electron distribution ftr, and the width-amplitude relation, in
order to discuss separately effects of ion dynamics and finite
perpendicular size. To make clear how the ion parameters
Ti, qi, and mi may come into later calculations, we have
deliberately written out the dimensional forms for fp and fi.
The dimensionless trapped electron density as a function of
the potential (and hence the cylindrical coordinates r and z)
was obtained to be

ntr Fð Þ ¼ F
r2

d2r

1

d2r
� 1

d2z

 !
� 2

d2r
� 1

d2z
� 2

d2z
ln

F
y

� �" #

� e�F 1� erf
ffiffiffiffiffiffiffi
�F

p� �h i
þ exp �tFð Þ; ð9Þ

where dz and dr are the parallel and perpendicular widths of
the potential, t � qiTe/Ti is the product of the electron to ion
thermal energy ratio and the unsigned ion to electron charge
ratio (written as qi as charge is in unit qe). The above
expression for ntr corresponds term by term to equation (1)
with the first term on the right-hand side �r, the second
term �np, and the third term ni. Here we see that ni =
exp(�tF) is always less than unity when F is positive.
[18] The trapped electron distribution obtained by Chen et

al. [2004] reads

ftr r;wð Þffiffiffiffiffiffiffiffi
2me

p ¼ 2
ffiffiffiffiffiffiffi
�w

p

p
r2

d2r

1

d2r
� 1

d2z

 !"
� 2

d2r
þ 1

d2z
� 2

d2z
ln

4w

�y

#

þ e�wffiffiffi
p

p 1� erf
ffiffiffiffiffiffiffi
�w

p� �	 

� etwffiffiffi

p
p

ffiffi
t

p
erfi

ffiffiffiffiffiffiffiffiffi
�tw

p� �
; ð10Þ

and the width-amplitude relation

dz �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffiffi
y

p
4 ln 2� 1ð Þ

Fp y; tð Þ � 4
ffiffiffiffi
y

p
=d2r

s
; ð11Þ

where

Fp y; tð Þffiffiffi
p

p ¼ ey 1� erf
ffiffiffiffi
y

p� �h i
� e�ty ffiffi

t
p

erfi
ffiffiffiffiffi
ty

p� �
:

Note that the trapped distribution has a mass factor
associated with it. For electron holes, the expression on
the right-hand side of equation (10) is the trapped electron
distribution divided by

ffiffiffiffiffiffiffiffi
2me

p
, while for ion holes, the same

expression with t � Ti/qiTe is the trapped ion distribution
divided by

ffiffiffiffiffiffiffi
2mi

p
. In the above expression for Fp, the first

term on the right-hand side comes from passing electrons,
and it is the same as the passing electron contribution in
equation (5). The second term involves t and is from the ion

contribution. The complex error function defined as erfi(z) =
erf(iz)/i is a real function of its argument. The limit of t = 0
sets the entire term involving t to zero and corresponds to
the limit of no ion dynamics. This limit is justified as when
ions are very hot (Ti ! 1), the motion of most ions is not
altered by the potential hump, and thus their density
perturbation is negligible. On the other hand, the limit of
dr ! 1 recovers the 1-D solutions. Setting both t = 0 and
dr ! 1 reduces equation (11) to equation (5). By
comparing equations (5) and (11), we see mathematically
how the ion dynamics and finite perpendicular size come in
to modify the relation between the allowed potential
amplitude and parallel width.
[19] We need to develop further how the participation of

ions and multidimensionality (finite perpendicular size)
modifies the allowed parameter space before we demon-
strate their separate effects. In addition to the constraint
presented in equation (11), since the denominator in equa-
tion (11) has to be positive definite, more constraints arise

Fp y; tð Þ > 0; ð12Þ

d2r > 4
ffiffiffiffi
y

p
=Fp y; tð Þ: ð13Þ

Equation (12) is plotted in Figure 2 to show that when ion
dynamics is included, there exists a maximum allowed
potential amplitude for a given t, the electron to proton
temperature ratio, if an electron-proton plasma is assumed.
The smaller the electron to ion temperature ratio, the larger
the bound on the allowed potential amplitude. If the ions are
in a higher charged state (larger qi), say O2+, then the same
temperature ratio would give rise to a t that is twice as large
and results in a tighter bound on the allowed potential
amplitude. It is interesting to note that for ion phase-space
holes, a higher charged state would result in a looser bound
given the same temperature ratio [Chen et al., 2004].

Figure 2. The allowed potential amplitudes of 1-D
electron holes (infinite perpendicular size) as a function of
t = qiTe/Ti, where qi is the ion charge in units of the electron
charge. The larger t (the larger the electron to ion
temperature ratio, and thus the more involved the ion
dynamics), the smaller the potential amplitude of electron
holes is allowed to get up to. In the limit of t = 0 (no ion
dynamics), the amplitude does not have an upper bound.
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[20] Setting t = 0 in equation (13), we obtain the con-
straint on the maximum allowed potential amplitude due to
the finite perpendicular size, and we plot the resulting
inequality in Figure 3. For each value of the perpendicular
size, there is an upper bound on the allowed potential
amplitude. The smaller the perpendicular size, the tighter
the bound. From Figures 2 and 3, we see that both ion
dynamics and the perpendicular size impose an upper bound
on the potential amplitude which does not exist in Figure 1
where effects of ion dynamics and finite perpendicular size
are not included.
[21] We are now ready to see how the parallel width and

amplitude relation is modified separately by the inclusion of
ion dynamics and the finite perpendicular size. We set dr !
1 in equation (11) and plot the remaining inequality in
Figure 4 for t = 0,0.1,1,10. Points on and below the
bounding curves are allowed. The larger t (the larger
electron to ion temperature ratio), the more important the
ion dynamics, and that results in tighter allowed parameter
space. The bounding curves for t = 1 and 10 are flat above

certain widths, exhibiting the upper bounds on potential
amplitudes discussed earlier due to finite temperature ratios.
To see the effect of finite perpendicular size (dr), we set t = 0
in equation (11) and plot the inequality in Figure 5 for dr =
0.2, 1,10 and 1. Points on and below each curve represent
allowed widths and amplitudes for each corresponding dr.
One can see that the allowed space shrinks for decreasing
perpendicular size. The flattening of the bounding curves is
a result of the upper bounds on potential amplitudes due to
finite perpendicular size (as shown in Figure 5).
[22] Combining effects of ion dynamics and finite per-

pendicular size, we plot equation (11) for two t values in
Figure 6. Points on and above the bounding surface A are

Figure 3. The allowed potential amplitude as a function of
the perpendicular size (dr) of electron holes neglecting ion
dynamics. The larger dr, the larger the maximum allowed
amplitude. In the limit of dr ! 1, the amplitude has no
upper bound.

Figure 4. The bounding curves for allowed widths and
amplitudes of 1-D electron holes for different values of t =
qiTe/Ti. Points on and below each curve are allowed for the
corresponding t. The dotted curve is for t = 0, that is, no ion
dynamics. The larger t (the colder ions with respect to
electrons, and thus the more important ion dynamics), the
smaller the allowed width-amplitude space. Note the cutoff
amplitudes for nonzero t.

Figure 5. The bounding curves for allowed parallel widths
and amplitudes of 3-D electron holes neglecting ion
dynamics for different perpendicular size (dr). Points on
and below each curve are allowed for the corresponding dr.
The dotted curve is the asymptotic bounding curve for dr !
1. Not only does the allowed width-amplitude space shrink
for decreasing dr but there is a cutoff in allowed amplitude
for a given finite dr.

Figure 6. The relation between the potential amplitude y,
the parallel width (dz) and the perpendicular width (dr) for 3-D
electron holes. Points on and above surface A are allowed
amplitudes and widths when ion dynamics is not considered
(t = qiTe/Ti = 0), and on and above surface B is the allowed
space for t = 0.1 The colder ions are relative to electrons, the
more important the ion dynamics, and the tighter the allowed
parameter space.
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allowed parameters (y, dz, dr), for t = 0 (no ion dynamics),
and points on and above surface B are allowed for t = 0.1.
The allowed space for y and dz shrinks when ion dynamics
is more important (larger t) and when the perpendicular size
(dr) is smaller.

5. Effects of Finite Hole Velocity

[23] In this section, we demonstrate how finite electron
hole velocity normalized by the ambient electron thermal
velocity (called the Mach number) modifies the inequality
between the potential amplitude and parallel width. To
single out this effect, we do not include ion dynamics and
finite perpendicular size in this section. Turikov [1984] has
obtained the equality width-amplitude relation for 1-D
electron holes for different Mach numbers neglecting ion
dynamics. His result is that for a fixed potential amplitude
the width increases with increasing Mach number, and for a
fixed width the potential amplitude decreases with increas-
ing Mach number. His result was obtained numerically, as
for a Maxwellian passing electron distribution there exists
no analytical expression for the trapped electron distribution
with nonzero Mach number.
[24] To demonstrate the Mach number effect in a simple

and clean way, we first use a Lorentzian passing electron
distribution (also called the Cauchy distribution; see
Gurnett and Bhattacharjee [2005] for more information
about the distribution) which allows an analytical trapped
electron distribution with nonzero Mach number. The pass-
ing electron distribution reads

fp wð Þ ¼
ffiffiffiffiffiffi
me

p

r
1ffiffiffiffi

w
p

�Mð Þ2 þ 1
þ 1ffiffiffiffi

w
p

þMð Þ2 þ 1

 !
; ð14Þ

where M is the Mach number, and the normalization
constant is chosen such that the unperturbed passing
electron density is 1. Again the mass factor is retained for
consistency with previous sections. The trapped electron
distribution function is then obtained as

ftr wð Þffiffiffiffiffiffiffiffi
2me

p ¼ 2
ffiffiffiffiffiffiffi
�w

p

pd2
1� 2 ln

�4w

y

� �� �
þ

ffiffiffiffiffiffiffi
�w

p
þ 1ð Þffiffiffi

p
p ffiffiffiffiffiffiffi

�w
p

þ 1ð Þ2 þM2

� � :
ð15Þ

Comparing equation (15) to equation (4), we can see that
the first term from the solitary potential is unchanged. It is
only the second term in ftr coming from the passing
electrons that is different, and this term is positive definite
and monotonically decreasing from w = 0 to w = �y for any
given Mach number. The width-amplitude relation for this
case is obtained by the condition ftr(w = �y) � 0 to be

d �

ffiffiffiffi
y

p
4 ln 2� 1ð Þ M2 þ

ffiffiffiffi
y

p
þ 1ð Þ2

� �
2

ffiffiffiffi
y

p
þ 1ð Þ

2
4

3
5
1=2

: ð16Þ

From equation (16), we can see immediately that the right-
hand side would increase with increasing M, which means
that the lower bound of the width would become larger for
larger M, hence the allowed space would shrink. From the

manner M appears in equation (16), we also see that when
M � 1, the effect of finite Mach number on the width-
amplitude relation is small, and approaches zero as M ! 0.
[25] Now that we have seen analytically how the Mach

number influences the allowed parameter space, we illus-
trate this influence for a Maxwellian passing electron
distribution in Figure 7 for quantitative comparison with
our results in other sections where a Maxwellian ambient
electron distribution is used. The bounding curves are
obtained numerically. Our result is that increasing Mach
number shrinks the allowed parameter space but in a way
different from those by the inclusion of ion dynamics and
finite perpendicular size. In particular, for small-amplitude
electron holes (ef/Te � 10�2), the minimum allowed
potential width is raised significantly when the Mach
number M goes up to 2 and 3. For M � 2, the minimum
allowed width cannot be smaller than one Debye length
unless the potential amplitude becomes extremely small
(y < 10�4 Te/e). High Mach number (M � 2) electron holes
therefore may be hard to detect even if they exist. This may
account for the fact that the observed electron holes all have
Mach numbers less than 2 [Franz, 2000; Franz et al., 2005].

6. Signatures in Distribution Functions

[26] It is worthwhile to illustrate the different signatures
of electron velocity distributions for solutions that dwell on
the bounding curve and those that do not. So far, the
capabilities of laboratory and space experiments cannot
resolve the phase space structures of electron holes. As
experimental techniques advance, the phase space structure
of a single electron hole may be resolved in the future. We
provide in this section examples of electron distributions
for future comparison with experiments. In Figure 8, we
plot the normalized distribution function that representsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pTe=2me

p
ftr (thick curves) and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pTe=2me

p
fp (thin curves)

at r = 0 and z = 0 as a function of velocity v (Te is
numerically 1 as it is the energy unit and is kept explicitly
for clarity in dimensions). The distribution functions here
are the fp and ftr in section 4. The solid curves in both
Figures 8a and 8b correspond to an electron hole that has
zero phase space density at its phase space center (r = 0, z =
0, v = 0). When the size of the structure is fixed, decreasing
the amplitude raises the center phase space density as shown

Figure 7. Allowed width-amplitude space of 1-D electron
holes neglecting ion dynamics for Mach number (hole
velocity normalized by the electron thermal velocity in the
ambient electron frame) M = 0,1,2,3. Points on and to the
right of the bounding curves are allowed. Increasing M
shrinks the allowed space.
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by the dashed curve in Figure 8a. On the other hand,
increasing the amplitude would lower the center phase
space density from zero to a negative value (not shown)
and hence result in unphysical solutions. When the ampli-
tude is fixed, increasing the parallel size raises the center
phase space density as shown in Figure 8b by the dashed
curve. Varying dr results in a similar effect.
[27] In summary, electron holes whose widths and ampli-

tudes follow the equal sign in the width-amplitude relation
have zero phase space density at the center of their phase
space structure, and those that do not follow the equal sign
have finite phase space density at the center. The simulation
study on 1-D electron holes by Omura et al. [1996] has
shown formation of electron holes with finite phase-space
density at the hole center for a bump-on-tail unstable initial
condition [Omura et al., 1996, Figure 7]. The studies by
Turikov [1984] and Muschietti et al. [1999a, 1999b, 1999c]
drew conclusions about how the width should vary with
potential amplitudes only from a subset of solutions, the
empty-centered electron holes, and hence they concluded
that the width must increase for increasing amplitudes
despite that formally a 1-D width-amplitude inequality
was obtained by Muschietti et al. [1999a]. On the other
hand, the conclusion that the width decreases with increas-
ing amplitudes by Schamel [1979] was due to a different
subset of allowed solutions that assume finite values at the
centers of the phase space holes.

7. Comparison With Space Observations

[28] Having discussed the origin and characteristics of the
width-amplitude inequality and how the inequality is quan-
titatively modified by the effects of ion dynamics, finite

perpendicular size, and hole velocity in previous sections,
we now compare our theoretical predictions with the elec-
tron holes observed by the Polar Plasma Wave Instrument
(PWI) [Gurnett et al., 1995]. The detailed observational
properties of these electron holes are presented by Franz et
al. [2005]. In this section we focus only on how the
observed electron holes populate the allowed parameter
space. Plotted in Figure 9 as dots are the parallel widths
and potential amplitudes of 2067 electron hole events
measured in the polar cusp. The solid curve is the theoret-
ical bounding curve for M = 0.3, dr = 2, and Te/Ti = 0.1. The
temperature ratio is taken from the Hydra electron and ion
data. The perpendicular size is not directly measured, but as
inferred by Franz et al. [2005], most of the structures have
their perpendicular widths larger than parallel widths which
are predominantly greater than 1 (lD). Therefore we use
dr = 2 to draw the bounding curve as we have learned from
section 4 that wider perpendicular size would yield a looser
bound. We would like to compare the data with the tightest
bound for relevant conditions in order to show that there are
significant amounts of electron holes residing deep in the
allowed region. The Mach number is taken to be 0.3, since
the most probable Mach number is reported to be 0.3 for the
cusp events [Franz et al., 2005]. Most of the observed Mach
numbers are less than 1 [see Franz et al., 2005, Figure 9],
and the location of the bounding curve does not vary much
for Mach number 0.3 to 1 according to Figure 7 (the dotted
curve is for M = 0 and solid curve for M = 1); therefore the
bounding curve for M = 0.3 presents well the Mach number
effect. Almost all the data points are in the allowed region,
and they cover a wide range of �3 orders of magnitude in
widths as well as in amplitudes. Most of the events cluster in
the region with widths 1–10 Debye lengths and amplitudes
10�4–10�2 electron thermal energy per charge. This region
is significantly away from the bounding curve. These
electron holes therefore are evidence for the accessibility
of allowed solutions far away from the bounding curve.
[29] Previous space [Ergun et al., 1998, 1999; Cattell et

al., 2003] and laboratory [Lynov et al., 1979] measurements
of electron holes are consistent with the results of widths

Figure 8. Normalized electron velocity distributions at the
center (r = 0, z = 0) of electron holes for different potential
amplitudes (y) and parallel sizes (dz): (a) (y, dr, dz) = (1.45,
5, 3) (solid lines) and (y, dr, dz) = (0.5, 5, 3) (dashed lines),
(b) (y, dr, dz) = (1.45, 5, 3) (solid lines) and (y, dr, dz) =
(1.45, 5, 10) (dashed lines). In both cases the thick lines
represent trapped electron distributions for the specified
parameters, and the thin lines are passing electron
distributions. With the same size, decreasing the potential
amplitude raises the phase space density of trapped
electrons, and the separatrices between trapped and passing
electrons are squeezed inward to lower velocities. With the
same amplitude and perpendicular size (dr), increasing the
parallel size raises the phase space density of trapped
electrons but leaving the separatrices at the same velocities.
The effect of varying the perpendicular size is similar to
varying the parallel size (not shown).

Figure 9. The potential amplitudes and parallel widths of
3-D electron holes observed by Polar Plasma Wave
Instrument (PWI) compared with the theoretical bounding
curve for M = 0.3, Te/Ti = 0.1, and dr = 2. A large fraction of
data points lie significantly away from the bounding curve,
presenting the evidence that Nature can realize electron
holes that dwell not just on the bounding curve but deep
into the allowed space. These electron holes were observed
in the Polar cusp.
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increasing with amplitudes and do not reveal the inequality
aspect, probably due to limited dynamical range in observed
widths and amplitudes and an emphasis on events with large
electric field amplitudes. The only definitive observation-
theory comparison on the width-amplitude behavior of
electron holes showed that the observed events clustered
only on the bounding curve within error bars. There is
therefore the question of whether allowed electron holes
away from the bounding curve exist in reality. Our electron
hole theory although predicting the existence of solutions
away from the bounding curve cannot address whether they
would be too unstable to be detected nor comment on
whether they can be realized in reality. The electron hole
observations by Polar PWI, together with our theoretical
width-amplitude prediction, directly addressed this previ-
ously unresolved issue. As discussed in section 3, electron
holes that are farther away from the bounding curve have
smaller electric field amplitudes than those that are closer to
the bounding curve. We emphasize that the capability of
Polar PWI to measure small-amplitude electric fields is
critical in uncovering the electron holes that dwell deep in
the allowed parameter space, and thus in revealing the
inequality aspect of the width-amplitude relation.
[30] In Figure 10, we present another comparison with a

different set of 764 electron hole events measured at the
plasma sheet/plasma sheet boundary layer (PS/PSBL). In
this geospace region, the observed electron holes tend to
have smaller size. A significant portion (�65%) of the
events are of sub-Debye scale, a feature not possible for
fluid solitons but allowed for phase space holes as discussed
in section 2. The solid curve is the theoretical bounding
curve for M = 0.1, dr = 1, and Te/Ti = 0.5. A majority of the
observed events lie in the allowed region and significantly
away from the bounding curve, again demonstrating the
accessibility of solutions whose widths and amplitudes are
only loosely constrained.
[31] A small fraction of data points that are of very small

size (0.02–0.3 lD) fall outside the allowed region. One
possibility is that these electron holes do not pass by the
spacecraft along their symmetry axis where the peak poten-
tial and the widest parallel width occur. This possibility is
supported by the observational feature that the perpendicu-
lar electric fields of a series of the PS/PSBL electron holes
have the same polarity [Franz et al., 2005, Figure 7],
indicating that this group of electron holes pass by the
spacecraft at their sides and all at the same side as pointed
out by Franz et al. [2005]. Note that the y and dz in our
theory (and all other electron hole theories) are the peak
potential amplitude and the parallel width along the sym-
metry axis of the azimuthally symmetric electron holes.
Cutting through an electron hole at the side results in
sampling a smaller potential amplitude and width and thus
may place an electron hole with an allowed width and
amplitude in the forbidden region. More generally speaking,
this effect would shift the actual amplitudes and widths
toward the bounding curve and beyond (lower amplitudes
and smaller widths). Since our main goal here is to present
evidence for electron holes that are in the allowed region but
away from the bounding curve, taking into account this
effect would make our point even stronger by shifting some
of the data points back into the allowed region and farther
away from the bounding curve.

[32] What would happen when the perpendicular motion
of the plasma comes into play? In the theory considered
above, the perpendicular motion of the plasma is not
included, that is, effects of finite gyroradius are ignored.
Our solutions describe electron holes for which the gyrora-
dius of electrons (rg) is much smaller than the size of the
solitary structure. When the electron gyroradius is compa-
rable or larger than the structure’s parallel and perpendicular
size (rg � dz, dr or rg > dz, dr), the electron holes are expected
to be less stable and thus have shorter life time [Muschietti
et al., 2000, 2002; Chen et al., 2004] but not a tighter
allowed width-amplitude space. In fact, the allowed width-
amplitude space is expected to be larger for solutions that
are valid for rg comparable to or greater than dz,dr. The
reason is that all the solutions we constructed for rg � dz,dr
will still be solutions for the special cases of field-aligned
electrons in the solution set that is valid for rg > �dz, dr.
Therefore a looser bound for the width and amplitude is
expected when the perpendicular motion is included. In
other words, the bounding curves in Figures 9 and 10 would
be shifted higher up and toward the left (smaller widths),
and hence the observed widths and amplitudes would be
even farther away from the bounding curve for solutions
that can handle rg > �dz, dr.

8. Discussion

[33] The data-theory comparison in the previous section
demonstrated the accessibility of electron holes that dwell
deep inside the allowed space. The fact that these electron
holes were detected as coherent structures indicates that
their lifetime is long enough for them to remain coherent
during their transit of the antennas. The questions of
accessibility and stability of these loosely constrained
electron holes are thus answered by the observations and
data-theory comparison to certain extent. In this section we
discuss the possible impact of the existence of these loosely
constrained electron holes.
[34] The confirmed accessibility and stability of loosely

constrained electron holes first opens up a rich mutual

Figure 10. The potential amplitudes and parallel widths of
3-D electron holes observed in the plasma sheet/plasma
sheet boundary layer by Polar PWI. The solid curve is the
theoretical bounding curve for M = 0.1, Te/Ti = 0.5, and dr =
1. A large fraction of data points fall under and far away
from the bounding curve. The comparison provides the
evidence that in this geospace region electron holes that
populate well into the allowed width-amplitude space are
realizable.
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interaction spectrum. For classical solitons, due to the 1-1
width-amplitude relation and the infinite conservation laws
contained in their governing equations, they can only pass
through each other retaining their original identities after
encounter [Drazin, 1983]. In other words, there are no
possibilities of giving rise to new solitons with different
widths and amplitudes while satisfying the infinite conser-
vation laws when solitons encounter each other. The same
cannot be said for loosely constrained electron holes. The
inequality width-amplitude relation of phase space holes
dictates many more degrees of freedom than have classical
solitons. The continuous allowed range of widths and
amplitudes leads to a much richer spectrum for mutual
interaction of electron holes, including complete coales-
cence, passing through retaining original identities, and
anything in between (partial merging). Some of these
possibilities have been observed in laboratory experiments
[Lynov et al., 1979; Saéki et al., 1979] as well as simu-
lations [Omura et al., 1996].
[35] Loosely constrained electron holes can get excited

much more easily than do classical solitons, again owing
to their inequality width-amplitude relation. As a conse-
quence, electron holes are more likely to play important
roles in shaping the bulk properties of the plasma
medium such as electrical resistivity and thermal conduc-
tivity. In a system with certain fluctuation level and
different fluctuation lengths, phase-space holes can be
accessed more easily since for a fixed amplitude there
is a wide range of allowed widths. This is opposed to the
case for solitons where the width must match the ampli-
tude exactly. We therefore envision that in turbulent
systems loosely constrained phase-space holes may be
spontaneously generated even in the absence of two-
stream or current-driven instabilities. The spontaneous
generation of loosely constrained holes and their sub-
sequent mutual interaction may dominate the transport
properties of the turbulence. Considering that many
plasma boundaries in space are characterized by fluc-
tuations of a wide spectrum of scales and that electro-
static solitary waves are observed at plasma boundaries
[Matsumoto et al., 1994; Bale et al., 1998; Williams et
al., 2005], we surmise that the birth and decay
of phase-space holes would make important influences
to plasma bulk properties in sustaining macroscopic
boundaries.
[36] A high density of phase-space holes in the plasma

could also affect the effective temperature and resistivity.
At the vicinity of the solitary waves, passing particles are
accelerated and, together with trapped particles, form
spatially localized counterstreaming beams (Figure 8)
which would have been unstable if there were no self-
consistent collective field (bipolar electric field) to sustain
them. The counterstreaming beams increase the velocity
spread to significantly higher than that for the ambient
plasma, resulting in a higher effective temperature (heat-
ing). Moreover, particle trapping will prevent particles
from free acceleration by applied electric fields and regu-
late the electric current. The high excitation probability of
these solitary waves can thus lead to finite resistivity that is
required for magnetic reconnection to occur in collisionless
plasmas. This view seems to be supported by recent space
observations of electrostatic solitary waves in regions

where magnetic reconnection occurs [Drake et al., 2003;
Matsumoto et al., 2003].

9. Summary and Conclusion

[37] We have discussed the basic characteristics of electron
holes including the underlying reason for them to have an
inequality width-amplitude relation and how the inequality is
modified by inclusion of ion dynamics, finite perpendicular
size, and finite hole velocity. The allowed width-amplitude
space shrinks for larger electron to ion temperature ratio,
smaller perpendicular size, and larger hole velocity. The
quantitative knowledge of how the width-amplitude inequal-
ity is modified by the above parameters enables us to make
comparison to electron hole observations reported by Franz
et al. [2005] and to demonstrate that their observations
present the first experimental evidence of the inequality
aspect. The capability of the Polar Plasma Wave Instrument
to measure small electric field amplitudes is critical in
probing the inequality aspect, as the farther away from
the bounding curve and deeper into the allowed parameter
space, the smaller electric field amplitudes of the electron
holes. The existence of these loosely constrained electron
holes opens up the possibility that they may be easily
accessed by turbulent fluctuations and play important roles
in transport and electrical conductivity in collisionless
plasma processes such as magnetic reconnection and
boundary formation.
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Saéki, K., P. Michelsen, H. L. Pécseli, and J. J. Rasmussen (1979), Forma-
tion and coalescence of electron solitary holes, Phys. Rev. Lett., 42, 501.

Schamel, H. (1979), Theory of electron holes, Phys. Scr., 20, 336.
Schamel, H. (1986), Electron holes, ion holes and double layers, Phys.
Rep., 140, 161.

Temerin, M., K. Cerny, W. Lotko, and F. S. Mozer (1982), Observations of
double layers and solitary waves in the auroral plasma, Phys. Rev. Lett.,
48, 1175.

Tsurutani, B. T., J. K. Arballo, G. S. Lakhina, C. M. Ho, B. Buti, J. S.
Pickett, and D. A. Gurnett (1998), Plasma waves in the dayside polar cap
boundary layer: Bipolar and monopolar electric pulses and whistler mode
waves, Geophys. Res. Lett., 25, 4117.

Turikov, V. A. (1984), Electron phase-space holes as localized BGK solu-
tions, Phys. Scr., 30, 73.

Williams, J. D., et al. (2005), Electrostatic solitary structures associated
with the November 10, 2003 interplanetary shock at 8.7 AU, Geophys.
Res. Lett., doi:10.1029/2005GL023079, in press.

�����������������������
L.-J. Chen, D. Gurnett, and J. Pickett, Department of Physics and

Astronomy, University of Iowa, Iowa City, IA 52242, USA. (li-jen-
chen@uiowa.edu)
J. Franz and P. Kintner, School of Electrical Engineering, Cornell

University, Ithaca, NY 14850, USA.

A09211 CHEN ET AL.: WIDTH-AMPLITUDE INEQUALITY OF ELECTRON HOLES

11 of 11

A09211


