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Kinetic simulations of magnetic reconnection typically employ periodic boundary conditions that
limit the duration in which the results are physically meaningful. To address this issue, a new model
is proposed that is open with respect to particles, magnetic flux and electromagnetic radiation. The
model is used to examine undriven reconnection in a neutral sheet initialized with a single x-point.
While at early times the results are in excellent agreement with previous periodic studies, the
evolution over longer intervals is entirely different. In particular, the length of the electron diffusion
region is observed to increase with time resulting in the formation of an extended electron current
sheet. As a consequence, the electron diffusion region forms a bottleneck and the reconnection
rate is substantially reduced. Periodically, the electron layer becomes unstable and produces a
secondary island, breaking the diffusion region into two shorter segments. After growing for some
period, the island is ejected and the diffusion region again expands until a new island is formed.
Fast reconnection may still be possible provided that the generation of secondary islands remains
sufficiently robust. These results indicate that reconnection in a neutral sheet may be inherently
unsteady and raise serious questions regarding the standard model of Hall mediated reconnection.

I. INTRODUCTION

Collisionless magnetic reconnection is a basic plasma
process in which magnetic field energy is rapidly con-
verted into kinetic energy [1]. Understanding this process
is of fundamental importance to a variety of applications
including planetary magnetospheres [2], solar flares, lab-
oratory fusion machines, and astrophysical plasmas. De-
spite considerable progress, many basic questions regard-
ing collisionless reconnection remain poorly understood.

In the study of magnetic reconnection, is important to
distinguish between undriven and driven reconnection.
In the undriven case, reconnection is allowed to develop
from the pre-existing gradients within the system while in
the driven case an external inflow forces plasma and mag-
netic flux into the system in a prescribed manner. Most
theoretical models have focused on 2D steady state recon-
nection in the presence of a single x-line. In this limit, re-
sistive magnetohydrodynamics (MHD) simulations have
established a direct link between the length of the diffu-
sion region and the type of reconnection possible [3–8].
Within the MHD model, the length of the diffusion region
is determined by the localization scale of the resistivity.
A continuum of solutions are obtained ranging from fast
reconnection (e.g., Petschek regime) when resistivity is
localized to inefficient reconnection (e.g., Sweet-Parker
regime) when resistivity is uniform.

Efforts to explain fast reconnection in collisionless plas-
mas have thus focused on identifying physical processes
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that may localize the diffusion region. In a kinetic
plasma, the structure of the diffusion region is thought
to consists of an inner electron region and an outer ion
region as illustrated in Fig. 1. The question then arises
as to the physical extent, stability, and relative role of
each diffusion region in controlling reconnection. Since
there is no first-principles theory to address these fun-
damental questions, simulations and scaling arguments
have played a prominent role [8–15]. From these efforts,
a widely accepted model has emerged that places consid-
erable emphasis on the importance of the Hall physics to
explain fast reconnection. Although the Hall term does
not contribute to the parallel electric field, it is thought
to facilitate reconnection in two ways. First, the dis-
persive properties of whistler waves permit the flux of
electrons through the inner diffusion region to remain fi-
nite, even as the dissipation approaches zero. As a conse-
quence, the electrons do not limit the reconnection rate,
provided that the length of the electron diffusion region
De remains microscopic. Instead, the reconnection rate is
controlled by the ion diffusion region which has a width
δi on the order of the ion inertial length di = c/ωpi.
Furthermore, it is argued that Hall physics is also re-
sponsible for localizing the length Di of the ion diffusion
region to permit fast reconnection [8, 12, 13, 15]. In the
GEM study [14], it was found that all simulations that
included the Hall term obtained similar fast reconnection
rates. While some researchers have concluded that the
Hall mediated reconnection rate is independent of the
system size [12, 15, 16], others have found a significant
dependence [17, 18].

Follow up studies have raised a number of questions re-
garding the role of the Hall physics in kinetic simulations.
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FIG. 1: Idealized structure of the diffusion region in a kinetic
plasma. Ions are unmagnetized within the grey region while
electrons are unmagnetized in the inner white region.

In particular, hybrid simulations (kinetic ions, fluid elec-
trons) in which the Hall term is intentionally removed
have found similar reconnection rates [19]. While in fluid
theory the Hall term is required to obtain fast reconnec-
tion, it appears that in a kinetic plasma the role of Hall
term is muted and ion kinetic effects can still permit fast
reconnection. In addition, it is well-known that fast re-
connection can still exists in the limit of mi = me where
the Hall term cancels and whistlers waves are absent [20].

Another important issue is the stability of the diffu-
sion region which may determine if reconnection is quasi-
steady or intermittent. For a single x-line, MHD simu-
lations indicate the diffusion region is stable when the
resistivity is localized [5, 21], while a uniform resistivity
gives rise to a Sweet-Parker layer which can in turn be-
come unstable to secondary tearing [4, 5, 21–23]. Within
two-fluid models, a single x-line is thought to be stable
with a reconnection rate highly insensitive to the dissi-
pation mechanism. This result has been demonstrated
in large two-fluid simulations with periodic boundary
conditions [12, 15] and also using Hall MHD with open
boundary conditions [16]. In these open boundary simu-
lations, the Hall electric field asymptotes to a maximum
value and does not decrease in time. Hybrid simulations
have also reported a stable x-line configuration [24–26]
but a recent study indicates the possibility of stretch-
ing of the diffusion region and intermittent reconnection
[27]. Fully kinetic particle-in-cell (PIC) simulations of
driven reconnection have observed secondary island for-
mation depending on the profile of driving electric field
[28]. However, full PIC simulations of undriven recon-
nection [27, 29–32] have found no evidence for secondary
island formation, but these results were limited by small
system size and periodic boundary conditions.

Although fully kinetic PIC simulations offer a first-
principles approach to evaluate the structure and stabil-
ity of the diffusion region, the widespread use of periodic
boundary conditions limits the physical relevance of the
results. To properly model the diffusion region, the sim-
ulation domain must be sufficiently large to prevent the

artificial recirculation of particles and magnetic flux dur-
ing the time interval of interest. This is very difficult to
achieve with full PIC and thus the results are only phys-
ically meaningful for the relatively short period of time
before the reconnection jets collide. While this issue is
also a concern in fluid simulations, the problem is even
more severe with full PIC due to the intense electron flows
generated along the separatrices that can easily exceed
the electron thermal speed. These flows are rapidly re-
circulated through the system along the separatrices and
back to the diffusion region, potentially influencing the
dynamics even before the reconnection jets collide. Thus
issues related to the basic structure and stability of the
diffusion region and the separatrices cannot be properly
addressed using periodic boundary conditions.

To make progress, it is crucial to develop appropri-
ate open boundary conditions for full PIC simulations.
In choosing these boundary conditions, the goal is to
effectively mimic a much larger system than is other-
wise possible. Various types of open boundary condi-
tions have been implemented in MHD [21], Hall MHD
[16, 33], and hybrid [19, 34, 35]. However, the implemen-
tation of open boundary conditions is more difficult in
full PIC due to a variety of factors including the pres-
ence of high frequency waves and the requirement for an
additional electrostatic boundary condition. The few re-
searchers who have made attempts focused entirely on
driven reconnection in which the electric field is specified
on the inflow boundary while a variety of conditions are
specified on the outflow boundary [36–42]. For the case
of undriven reconnection, it does not appear that any
researchers have implemented open boundary conditions
for full PIC.

In this work, a new open boundary model is described
for full PIC simulations of magnetic reconnection. The
inflow and outflow boundaries are treated symmetrically
and are open with respect to particles, magnetic flux and
electromagnetic radiation. These boundary conditions do
not correspond to any physical boundary, but are chosen
to truncate the computational domain and mimic a larger
system. The approach relies on three main innovations:

1. A technique to inject particles from the boundary
in a way that approximately enforces a zero normal
derivative condition on the moments up through
the full pressure tensor.

2. An electrostatic boundary condition that permits
electrostatic structures to extend smoothly to the
outflow boundary.

3. An electromagnetic boundary condition that per-
mits electromagnetic radiation to leave the sys-
tem, while approximately enforcing a zero normal
derivative condition on the magnetic field.

While the model has been tested for a range of guide
fields, this manuscript focuses on reconnection in a neu-
tral sheet. In this limit, comparisons with much larger
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periodic simulations provide strong evidence indicating
the new model can indeed mimic a larger system.

The new open boundary conditions permit the diffu-
sion region to develop over time scales much longer than
have ever been simulated with a fully kinetic approach.
During the initial phase, the evolution of the system and
the observed reconnection rates are in excellent agree-
ment with a large body of previous work. However, over
longer time periods, the structure of the diffusion region
continues to evolve and the results are dramatically dif-
ferent. Indeed, these results require a re-examination
of the standard model of Hall mediated reconnection.
In particular, the length of the electron diffusion region
does not remain microscopic, but expands in time to
De ∼ 25di for the case considered. As a result, the re-
connection rate drops and a spatially extended electron
current sheet is formed in the diffusion region. Periodi-
cally, this extended current layer leads to the formation of
a secondary island, breaking the diffusion region into two
shorter segments. After the island is ejected, the length
of the diffusion region again increases with time until
the formation of a new island and the cycle is repeated.
In large systems, it appears the ultimate length of the
electron diffusion region is limited by the stability of the
elongated electron layer to secondary island production.
These results suggest a radically different mechanism for
the essential physics controlling the reconnection rate.

II. OPEN BOUNDARY MODEL

The new model was developed using an existing paral-
lel PIC code that has been used previously to model cur-
rent sheet instabilities [43–45] and magnetic reconnection
[27, 46]. The fields are advanced using a simple explicit
algorithm [47, 48] while the particles are advanced us-
ing the leapfrog technique and moments are accumulated
with area weighting. In previous work, periodic bound-
ary conditions were employed for the particles and fields
in the outflow direction. Along the transverse bound-
ary, conducting conditions are typically employed for the
fields while the particles are reflected.

To improve upon these simple boundary conditions,
introduces a range of difficult issues. In particular, the
question of precisely what conditions constitute a phys-
ically meaningful boundary value problem has not been
rigorously solved even for ideal MHD [49]. A perfect open
system would permit all the characteristics to cross the
boundary smoothly. Due to the long list of possible waves
in the Vlasov-Maxwell description, it is not clear how to
accomplish this in general. For the purpose of this work,
the focus has been have limited to boundary conditions
that are open with respect to particles, magnetic flux and
electromagnetic radiation.

A. Particle Boundary Condition

To model an open boundary, a zero normal derivative
condition is often applied to the fluid moments in MHD
[21, 49], Hall MHD [16, 33] and hybrid [34] simulations
of magnetic reconnection. While this type of boundary
condition is conceptually simple, it is difficult to imple-
ment in a PIC code since the calculation involves the
time evolution of Lagrangian tracer particles. To enforce
a boundary condition on the moments, one must instead
specify how particles enter and leave the system. Due to
the particle discreteness, any such boundary condition on
the moments is only approximately satisfied during any
given time interval. In large-scale hybrid simulations of
reconnection [34], this type of condition was applied in
an approximate manner for the first two moments of the
ion distribution.

Motivated by this previous work, we propose a new
technique for applying the zero normal derivative condi-
tion to the moments up through all elements of the pres-
sure tensor for each species. The basic idea for the par-
ticle boundary condition is illustrated in Fig. 2. When
a particle crosses a boundary in the outward direction
it is permanently lost, but new particles are injected at
each time step in an attempt to maintain a zero normal
derivative condition on the first three moments

∂〈fsv
i
mvj

k〉
∂n

= 0 , (1)

where fs is the distribution function of species s, 〈 〉
represents velocity space integration, i + j ≤ 2 to treat
moments up through the pressure tensor, n is the normal
direction for the boundary in question and m, k = x, y, z
signify the components of the velocity. Aside from the
issue of a scalar versus a tensor pressure, this bound-
ary condition is consistent with previous fluid simula-
tions [16, 21]. However, it is not possible to apply this
condition precisely at any given instant to the inherent
statistical fluctuations in PIC simulation. In fluid simu-
lations, rigorously enforcing a zero normal derivative on
the moments is known to produce reflection of waves [49].
In contrast for a PIC simulation, the information is car-
ried by the particles which are free to leave the system
without difficulty. Thus when a longitudinal wave in-
teracts with the boundary, the particle correlations are
destroyed which tends to minimize reflections.

The more difficult problem is to specify the inward
flux of particles from the plasma that would exist just
outside the simulation domain for a larger system. The
boundary condition in Eq. (1) implies that the moments
just outside the system are equal to the moments near
the boundary. Thus to approximately enforce Eq. (1), we
assume that the distribution function in the region near
the boundary may be approximately characterized by a
quadratic form

fs = Cs exp [− (v − Us) · Ws · (v − Us)] , (2)
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FIG. 2: Particles that reach a boundary are permanently lost,
while new particles are injected from the vx > 0 portion of
phase space in an attempt to preserve Eq. (1) up through the
full pressure tensor.

where Cs is a normalization constant, Us is the fluid ve-
locity and Ws is an unknown tensor. These constants are
determined for each ghost cell by the first three moments
of the distributions

ns =
∫

fs d
3
v , (3)

Us =
∫

vfs d
3
v ,

Ps = ms

∫
(v − Us) (v − Us) fs d

3
v ,

in the boundary region immediately inside the simula-
tion. Performing the integration results in

Cs =
ns

√
det (Ws)
π3/2

, Ws =
msns

2
P

−1
s

, (4)

so that by computing the inverse of the pressure tensor
P

−1
s

the quadratic form for the corresponding distribu-
tion is immediately obtained. The flexibility of allowing
a full pressure tensor is important for kinetic simulations
of reconnection for a number of reasons. Even if the dis-
tributions are gyotropic, in the presence of temperature
anisotropy (T‖s

�= T⊥s) the pressure tensor is not diag-
onal in the simulation frame (although it is diagonal in
the local magnetic frame). In addition, previous periodic
simulations of reconnection indicate both temperature
anisotropy as well as some degree of agyrotropy at the
outflow boundaries. The assumed distribution in Eq. (2)
permits both of these possibilities yet only requires the
moments in the simulation frame (i.e. not necessary to
transform Ps to local magnetic frame).

The distribution function for each ghost cell surround-
ing the domain is characterized by Eq. (2) where the
moments are determined by the measured values in the
interior cells immediately adjacent. Due to the statisti-
cal noise in a PIC simulation, it is necessary to average
the computed moments. To reduce the short scale spa-
tial fluctuations, a standard 9-point spatial filter [50] is

employed. In addition, the calculated moments are time
averaged using a simple relaxation scheme

M
new

s
= R Ms + (1 − R) M

old

s
, (5)

where M
new

s
is the new moment, Ms is the computed mo-

ment immediately inside the domain at a given time step,
M

old

s
is the old value of the moment, and 0 < R ≤ 1 is a

relaxation coefficient that controls how rapidly the mo-
ments in the ghost cell are permitted to change. The spa-
tial and temporal smoothing is applied to the moments
for each species (Ms = ns, Us, Ps), and the coefficient
R is selected to average on the Ωci time scale.

The only remaining problem is to properly sample the
distribution in Eq. (2) in order to inject the correct num-
ber of particles with appropriate inward velocities at each
time step in the calculation. Although the same particle
boundary condition is applied on all boundaries, for nota-
tional simplicity consider the boundary shown in Fig. 2
with normal in the x direction. At a position z along
this boundary, the inward flux of particles with normal
velocity less than vx is

Γs(z, vx, t) =
∫ ∞

−∞

∫ ∞

−∞

∫
vx

0

v
′
x
fs(z,v

′
, t) dv

′
x
dv

′
y
dv

′
z

,

(6)
while the total inward flux is Γso(z, t) ≡ Γs(z,∞, t). For
the assumed form of the distribution in Eq. (2), the in-
tegrals simplify to

Γs =
nsVsx

2π1/2

{
exp

(
− U

2
x

V 2
sx

)
− exp

(
− (vx − Ux)2

V 2
sx

)

+ π
1/2 Ux

Vsx

[
erf

(
vx − Ux

Vsx

)
+ erf

(
Ux

Vsx

)]}
, (7)

where V
2
sx

≡ 2Pxx/(msns) and Γs, Ux and Vsx are func-
tions of z and t [continuously updated with Eq. (5)]. To
compute the number of particles to inject, the total in-
ward flux is integrated across the cell size in the trans-
verse direction and then integrated as a function of time

Nj = Δz

∫
t

0

Γso(zj , t
′)dt

′
, (8)

where Nj is the total number of particles injected from
the ghost cell centered at zj and Δz is the transverse
width of the cell. This expression is continually updated
with Nj stored as a real number. However, only an in-
teger number of particles are injected at each time step
with the remainder accumulated for future injections.

For a given ghost cell, the probability that a particle
with normal velocity less than or equal to vx (but any
possible transverse velocity) will cross into the system is
proportional to Γs(zj , vx, t). To sample the distribution,
one must normalize by the total inward flux

Γs(zj , vx, t)
Γso(zj , t)

= Rx , (9)
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where Rx is a uniform random deviate between [0,1]. Us-
ing Γs in Eq. (7), this equation is solved numerically to
compute vx for each Rx. Next, the transverse velocity
components must be chosen in a manner consistent with
the assumed distribution. Assuming vx is known from
the solution of Eq. (9), the probability that the particle
will have a velocity less than or equal to vy (but with any
possible vz) is

∫ ∞
−∞

∫ vy

−∞ fs(zj , vx, v′
y, v′

z)dv′
ydv′

z∫ ∞
−∞

∫ ∞
−∞ fs(zj , vx, v′

y, v′
z)dv′

ydv′
z

= Ry , (10)

where Ry is a uniform random deviate between [0,1]. Per-
forming the integration and solving for vy results in

vy = Uy + erf−1(2Ry − 1)
(

Wzz

WyyWzz − W 2
yz

)1/2

(11)

+ (vx − Ux)
Pxy

Pxx
.

With both vx and vy known, the vz component is calcu-
lated from the ratio∫ vz

−∞ f(zj , vx, vy, v′
z)dv′

z∫ ∞
−∞ f(zj , vx, vy, v′

z)dv′z
= Rz , (12)

where Rz is a uniform random deviate. Performing the
integration and solving for vz results in

vz = Uz +
1

Wzz

[√
Wzzerf−1(2Rz − 1) (13)

− (vx − Ux)Wxz − (vy − Uy)Wyz

]
.

To summarize, the number of particles to inject inward
for each ghost cell is computed by the time integration of
the inward flux as shown in Eq. (8). To properly sample
the distribution, the velocity for each injected particle is
chosen based on three random numbers and Eqns. (9),
(11) and (13). This method assures that the reinjected
particles are completely uncorrelated with those leaving
the box, but are statistically sampled from a distribution
possessing the same time-averaged moments.

B. Field Boundary Condition

In the PIC code employed for this research, the fields
are advanced using the scalar and vector potentials

B = ∇× A ,

E = −∇φ − 1
c

∂A
∂t

.

In the Coulomb gauge ∇ · A = 0, Maxwell’s equations
take the form

∇2A − 1
c2

∂2A
∂t2

= −4π

c
J +

1
c

∂∇φ

∂t
, (14)

∇2φ = −4πρ . (15)

x

z
φ = 0

φ = 0

φ
=

0

ΔvΔv

φ
=

0

FIG. 3: Electrostatic boundary condition employed for
Eqns. (15) and (16). In the outflow direction, a vacuum gap
is introduced so that the φ = 0 condition is applied at some
distance Δv outside the system.

These equations are solved using a standard explicit ap-
proach [47, 48, 50]. Since area weighting is used to inter-
polate the particle information to the grid, the resulting
ρ and J do not satisfy the continuity equation to numeri-
cal round-off. To correct for this small inconsistency, the
auxiliary equation

∇2 ∂φ

∂t
= 4π∇ · J , (16)

is used to compute the electrostatic contribution to the
displacement current ∂φ/∂t in Eq. (14). This approach
guarantees that the gauge condition is preserved to nu-
merical round-off at each time step[47, 48].

Boundary conditions are required for each component
of A as well as φ around the perimeter of the system. It is
difficult to physically justify the proper form for the elec-
trostatic boundary condition along an open boundary.
Nevertheless, due to the strong nature of Debye screen-
ing in plasmas, there is some hope that the results may
be fairly insensitive to the precise condition, provided the
existence of some essential feature is not precluded. In
particular, previous simulations indicate strong electro-
static field structures extending outward along the sepa-
ratrices. Enforcing a φ = 0 condition around the entire
perimeter would not allow such a structure to extend
smoothly to the outflow boundary. To relax this con-
dition, one may introduce a vacuum gap and move the
spatial location of where φ = 0 is applied to some dis-
tance Δv outside the system as shown in Fig. 3. The gap
distance Δv may be either finite or infinite using a stan-
dard technique [36, 50]. For this manuscript, the gap was
chosen to be 5% of the box length in the out-flow direc-
tion, but the essential results (i.e. reconnection rate) are
highly insensitive to the precise value of Δv. The electro-
static boundary conditions shown in Fig. 3 are employed
for both Eq. (15) and Eq. (16).

In choosing the boundary conditions for the vector po-
tential, we are guided by previous MHD [21] and Hall
MHD [16] simulations in which the normal derivative of
the transverse components of B are set to zero at the
boundary. Unfortunately, the direct implement of this
condition results in the steady accumulation of short-
wavelength electromagnetic noise that eventually over-
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∂Ax

∂x
= −

∂Az

∂z

∂Az

∂z
= −

∂Ax

∂x

∂Ax

∂t
± c

∂Ax

∂z
= 0

∂Az

∂t
± c

∂Az

∂x
= 0

∂2Ay

∂t∂x
± c

∂2Ay

∂x2
= 0

∂2Ay

∂t∂z
± c

∂2Ay

∂z2
= 0

FIG. 4: Summary of electromagnetic boundary conditions.
To match to the outgoing waves, the positive signs apply at
the right and top boundaries while the negative signs apply
at the left and bottom boundaries.

whelms the reconnection electric field. Fortunately, it is
possible to modify the boundary conditions to permit ra-
diation to leave the system while approximately retaining
the same long time behavior. In this regard, the most im-
portant boundary condition is for the out-of-plane vector
potential Ay, since this determines the in-plane magnetic
field. To justify this boundary condition, consider the
normal derivative of the y component of Eq. (14) at the
outflow boundary

∇

2 ∂Ay

∂x
−

1
c2

∂2

∂t2

∂Ay

∂x
= −

4π

c

∂Jy

∂x
= 0 ,

where the last equality is due to the particle boundary
condition in Eq. (1). Now assuming the dominant con-
tribution to the Laplacian operator at the boundary is
∇

2
≈ ∂2/∂x2, this equation may be factored

(
1
c

∂

∂t
−

∂

∂x

) (
1
c

∂

∂t
+

∂

∂x

)
Bz ≈ 0 (17)

where Bz = ∂Ay/∂x. At the left and right outflow
boundaries, the appropriate sign is selected to match
the outward propagating solution. The same line of rea-
soning applies at the inflow boundaries, but the normal
derivative is ∂/∂z and the resulting wave equation is for
Bx. These boundary conditions permit electromagnetic
radiation (polarized out-of-plane) to leave the system.
Averaging over the rapid time scale associated with light
waves, these boundary conditions reduce to ∂Bz/∂x ≈ 0
along the outflow, while ∂Bx/∂z ≈ 0 along the inflow.

For the in-plane components of the vector potential,
a standard radiation boundary condition [50, 51] is em-
ployed, to allow electromagnetic waves with in-plane po-
larization to leave the system. This boundary condition
is commonly used in kinetic simulations of laser-plasma
interactions, and also corresponds to matching with an
outward propagating plane-wave solution. This condi-
tion is implemented on the transverse in-plane compo-
nent of A, while the normal component is constrained
by the gauge condition. For waves at normal incidence,
these simple boundary conditions give complete absorp-
tion while for an incident angle of 45◦ the reflection is
approximately 17% or 3% in terms of energy [50]. There

tΩci = 0.47

x/Lx/L

z
/
L

tΩci = 0.1 tΩci = 0.47

FIG. 5: The out-of-plane electric field Ey resulting from a
large amplitude perturbation localized in the center of the
box at t = 0. The impulse launches an outward propagating
radiation front which is shown at early time (left) and at later
time (right) to demonstrate that light waves leave the system.

are techniques for improving these simple boundary con-
ditions to obtain nearly complete absorption [52, 53].
However, these techniques are significantly more compli-
cated and the simple method appears adequate to avoid
the accumulation of radiation previously mentioned.

The electromagnetic boundary conditions employed for
each component of A are summarized in Fig. 4. Notice
these conditions are symmetric with respect to the in-
flow and outflow boundaries, and are thus appropriate to
model undriven reconnection.

C. Test of Particle Injectors

The new particle injection algorithm was tested sep-
arately from the implementation in the PIC code using
the following approach. There are ten scalar input quan-
tities to the algorithm (ns, Us, and Ps) along with the
specification of the boundary normal direction. For the
boundary shown in Fig. 2 with normal in the positive x di-
rection, the injection algorithm samples from the vx > 0
region of phase space, while if the normal direction is re-
versed the algorithm samples from the vx < 0 region. By
combining the leftward plus the rightward injections, the
entire distribution is sampled and one may directly recon-
struct the moments from the particle velocities obtained
from the algorithm. This procedure accurately repro-
duces the desired input moments indicating the method
is conceptually correct and properly implemented.

D. Test of Radiation Boundary Condition

To demonstrate the boundary conditions are open with
respect to electromagnetic radiation, a number of Harris
sheet simulations were initialized with a large amplitude
perturbation δAy, highly localized in the center of the
box. This sudden impulse launches a large amplitude
radiation front that propagates outward at the velocity
of light. An example is shown in Fig. 5 at early time
shortly after the impulse is generated and at later time
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as the waves leave the system. By closely examining a
number of such simulations, it is clear that reflections at
the boundaries are quite minimal and over longer peri-
ods of the time there is no observable accumulation of
electromagnetic radiation in the system. The interaction
of other types waves with the boundary has not been
systematically studied. However, it is expected that any
wave with a longitudinal component will be damped to
some degree, since particle correlations are destroyed by
the particle boundary condition.

E. Description of Diagnostics Employed

Energy Conservation - As a standard consistency
check, the energy conservation equation for the fields is
evaluated in integral form

d

dt

∫ (
B2

8π
+

E2

8π

)
dV +

∫
S · da +

∫
E · J dV = 0 ,

where S = c(E×B)/4π is the Poynting flux. The flow of
electromagnetic energy into and out of the simulation do-
main is evaluated by computing S ·da along each bound-
ary. The total field energy and the energy exchanged
with the particles (E · J) are both integrated over the
domain at each time step. Typical open boundary cal-
culations satisfy this equation to an accuracy of about
1% over 2 × 105 time steps, which is comparable to the
energy conservation with periodic boundary conditions.

Reconnection Rate - For 2D steady-state reconnec-
tion, the out-of-plane electric field should be a constant
across the simulation domain. Thus to evaulate the
steadiness of reconnection and measure the reconnection
rate, the out-of-plane electric field is evaluated at three
locations: (1) in the center of the box (i.e. near the x-
point), (2) at the center of the two inflow boundaries, and
(3) at the center of the two outflow boundaries. Steady-
state reconnection is achieved only when these three elec-
tric field measurements approximately balance over some
time interval. Since the instantaneous electric fields are
noisy, the normalized reconnection rate is computed from

ER ≡ 1
BoVA

〈
∂Ay

∂t

〉
, (18)

where 〈 〉 denotes the average over a time interval 4Ω−1
ci ,

and VA = Bo/
√

4πnbmi is the Alfvén velocity based on
the initial Bo and nb at the inflow boundary.

Streamlines - The streamlines for the ion and electron
flow velocities are useful to quickly visualize the struc-
ture of the layer. However, the streamfunction is only
rigorously defined for incompressible flow ∇ · Us = 0,
while PIC simulations are compressible. Nevertheless,
compressibility effects are fairly small in most regions
and one may still define an approximate streamfunc-
tion Us = ∇ × Ψ. For 2D simulations, the out-of-
plane component of the streamfunction is then computed

from ∇2Ψy = −(∇ × Us)y. The consistency of this ap-
proach is checked afterwards by evalutating Us · ∇Ψy =
|Us||∇Ψy| cos(θ) with typical results θ ≈ 85◦ → 90◦ in-
dicating the approximate streamlines are sufficiently ac-
curate for the purpose of visualization.

III. RECONNECTION IN A NEUTRAL SHEET

All simulations discussed in this manuscript employ a
Harris sheet [54] for the initial configuration with mag-
netic field Bx = Bo tanh(z/L) where L is the half-
thickness of the layer. The density profile for the Har-
ris distribution is n = nosech2(z/L) and the distribu-
tion functions for each species are initialized as drifting
Maxwellians. In addition, a uniform background plasma
is introduced with density nb, zero net drift and the same
temperature as the Harris distributions. Although the
background plasma does not modify the force balance, it
is essential to include so that new plasma can flow into
the diffusion region and so that the distribution is well
characterized along all boundaries. The time averaging
in Eq. (5) requires an initial distribution for each ghost
cell which is specified by the initial distribution immedi-
ately inside the simulation domain. For this manuscript,
the initial simulation parameters are

ρi

L
= 1,

mi

me
= 25,

Ti

Te
= 5,

ωpe

Ωce
= 3,

nb

no
= 0.3, (19)

where ρi = vthi
/Ωci is an ion gyroradius, vthi

=
(2Ti/mi)1/2 is the ion thermal speed, Ωcs = eBo/(msc) is
the gyrofrequency and ωpe = (4πnoe

2/me)1/2 is the elec-
tron plasma frequency. These parameters imply an elec-
tron thermal speed vthe = (2Te/me)1/2 ≈ 0.136 c. The
spatial scales are normalized to the ion inertial length
di = c/ωpi where ωpi = (4πnoe

2/mi)1/2. Time is nor-
malized by the ion gyrofrequency Ωci = eBo/(mic) and
the fluid velocities for each species are normalized by vths .

To initiate reconnection in the center of the simulation
domain, a small perturbation is imposed on the out-of-
plane vector potential

δAy = −Ao cos
(

2πx

Lx

)
cos

(
2πz

Lz

)
, (20)

where Lx and Lz are the box size and Ao = 0.1Boc/ωpi.

A. Small Open Boundary Simulation

For the first test case with open boundaries, we con-
sider a relatively small box size 25di×25di corresponding
to 768 × 768 cells and 3.75 × 108 computational parti-
cles. The time step is ΔtΩce = 0.036 and the simulation
is initialized with the small perturbation in Eq. (20) to
initiate reconnection in the center of the box. The re-
sults in Fig. 6 indicate a peak reconnection rate at the
x-point of ER ≈ 0.073 near time tΩci = 45, followed by
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FIG. 6: Reconnection electric field from 25di × 25di open
boundary simulation with parameters given in Eq. (19). The
electric field is computed at three location: (1) at center of
the domain near the x-point, (2) at the center of the inflow
boundaries and (3) at the center of the outflow boundaries.

a slow decrease until an approximate steady-state value
ER ≈ 0.018 is achieved for tΩci > 135.

Although the maximum reconnection rate at the x-
point in Fig. 6 is consistent with previous periodic PIC
simulations, the subsequent decline and slower steady-
state value are quite different. In order to make mean-
ingful comparisons with results in the literature, it is
important to normalize the reconnection rate based on
conditions just upstream of the ion diffusion region[15].
To convert the results in Fig. 6 to this normalization, it
is necessary to examine the plasma density and magnetic
field along a vertical slice through the diffusion region.
As shown in Fig. 7, changes in the density in the up-
stream region are relatively small with ne/nb ≈ 0.9 over
the time interval (tΩci = 90 → 180). Changes in the
magnetic field are more significant and depend on the
criteria used to identify the upstream edge of the ion
diffusion region. Defining the upstream edge by the loca-
tion where the ion and electron inflows begin to diverge
gives approximately z/di ≈ 3 and the magnetic field is
Bx/Bo = 0.83, 0.78, 0.72, 0.71 for the four times shown.
The reconnection rate based on these upstream condi-
tions is E

∗
R

= ER(ne/nb)1/2(Bo/Bx)2. While this renor-
malization is important for making comparisons, it does
not change the basic shape of the curve in Fig. 6. Us-
ing this standard normalization, the peak reconnection
rate E

∗
R

≈ 0.1 is in good agreement with previous pre-
dictions [12, 16], but the quasi-steady rate E

∗
R

≈ 0.033
is significantly weaker. It is important to emphasize that
this quasi-steady value is achieved over a fairly long time
interval tΩci = 135 → 180 and that the corresponding
density and magnetic field profiles in Fig. 7 are nearly
constant over this interval.

To explore these results in more detail, the basic struc-
ture of the reconnection layer is shown in Fig. 8 for a

z/di

B
x
/
B

o
n

e
/
n

o

FIG. 7: Magnetic field (left) and density (right) along a verti-
cal slice though the diffusion region (x = 12.5di) at four simu-
lation times. At the upstream edge of the ion diffusion region
z/di ≈ 3 the magnetic field is Bx/Bo = 0.83, 0.78, 0.72, 0.71
for the four times shown.

simulation time tΩci = 45 near the maximum reconnec-
tion rate. In the diffusion region of Fig. 8a, an electron
scale structure is visible in the electron density (see also
Fig. 7) with depletion regions extending outward along
the separatrices. The maximum ion inflow in Fig. 8b
is Uiz/VA ≈ 0.076 which is in good agreement with the
reconnection rate in Fig. 6 for this time. All moments
and fields are well-behaved at the outflow boundary, and
both plasma and magnetic flux smoothly exit the system
as is evident in the ion outflow velocity in Fig. 8c. In-
tense electron flows are observed along the separatrices
with a structure similar to previous periodic simulations.
However, the open boundary conditions eliminate the ar-
tificial recirculation and allow the structures along the
separatrices to extend smoothly to the outflow boundary
as shown in Figs. 8d-e.

Although the initial evolution of this open system is
consistent with previous periodic simulations, the evolu-
tion over longer time scales is markedly different. The
standard model of Hall mediated reconnection requires
the length of the electron diffusion region to remain mi-



9

(a) ne

(b) Uiz

(c) Uix

(d) Uey

(e) Uex

z
/
d

i

x/di

z
/
d

i
z
/
d

i
z
/
d

i
z
/
d

i

FIG. 8: Open boundary simulation results for 25di×25di case
at time tΩci = 45 showing contours of (a) electron density
ne, (b) ion inflow velocity Uiz, (c) ion outflow velocity Uix,
(d) electron out-of-plane velocity Uey and (e) electron outflow
velocity Uex. The black lines denote the flux surfaces, density
is normalized by no and the velocities are normalized by vths .

croscopic De <∼ di. In contrast, the electron outflow jets
in Fig. 8e extend over a significant fraction of the box
size. In addition, the current density in the diffusion re-
gion forms an extended sheet dominated by the electron
out-of-plane velocity shown in Fig. 8d. As the simulation
proceeds past the maximum reconnection rate, the spa-
tial extent of the electron outflow jets steadily increase
during the time periodic tΩci = 45 → 135 until the elec-
tron diffusion region reaches the simulation boundary.
During this stretching process, the reconnected flux is
rapidly ejected in the outflow direction by the electron

(a) tΩci = 90

(c) tΩci = 113

(b) tΩci = 105

(d) tΩci = 180

x/di

z
/d

i
z
/d

i
z
/d

i
z
/d

i

FIG. 9: Out-of-plane electron velocity Uey at four different
simulation times showing the stretching of the electron dif-
fusion region and production of a secondary island. These
results are for the 25di × 25di open boundary case.

jets and the length of the electron current sheet also in-
creases with time as shown in Fig. 9. Near simulation
time tΩci = 95 the out-of-plane current sheet becomes
unstable resulting in the formation of a secondary island.
For a brief period, this results in two separate diffusion
regions (see Fig. 9b) each undergoing fast reconnection.
However, the secondary island is ejected from the sys-
tem before it grows to large amplitude (see Fig. 9c), and
the electron current sheet again continues to stretch until
limited by the box size. The formation of this secondary
island and subsequent ejection from the system account
for the rapid changes visible in the electric field diagnos-
tic in Fig. 6 during the time period tΩci = 90 → 120.

The question of whether this particular case would con-
tinue to produce secondary islands is unknown. However,
it is not clear that letting this simulation run longer is
physically meaningful since the electron diffusion region
has stretched all the way to the system boundary. Indeed,
the basic motivation for the open boundary model is that
gradients (and accelerations) are weak at the boundary.
To satisfy this requirement, the domain must be large
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FIG. 10: Comparison of the reconnection electric field in the
center of the box (near x-point) for the 25di × 25di simula-
tion with open boundary conditions (solid) and 100di ×100di

simulation with periodic boundary conditions (dashed). Since
the onset phase is different between these simulations, the pe-
riodic results are replotted with a tΩci = −32 offset (dotted).

enough so that the diffusion region is localized away from
the boundaries. Based on previous work [11, 12, 16], we
expected the spatial extent of the electron diffusion re-
gion to remain very small De <∼ di, but instead the length
of De was limited by the box size in this simulation.

B. Very Large Periodic Simulation

Since these new results are rather surprising, it is im-
portant to look for ways to verify the essential predictions
while eliminating the influence of the new open bound-
ary conditions. In this regard, one obvious test is to
revert back to periodic boundary conditions but with a
much larger domain size, and thus allow the simulation
to proceed longer before recirculation effects completely
dominate. In addition, it is important to increase the
flux available for reconnection by increasing the domain
size in the inflow direction as well.

For this comparison test, the same equilibrium is used
with plasma parameters given in Eq. (19), but the do-
main size is increased to 100di × 100di. This requires
3072 × 3072 cells and 5 × 109 computational particles.
A standard set of boundary conditions are employed
[27, 44–46, 55] in which both the particles and fields are
periodic in the x direction. Along the transverse bound-
aries, conducting boundary conditions are used for the
fields and the particles are reflected. The same initial
perturbation in Eq. (20) is used to initiate reconnection.

The reconnection electric field resulting from this large
periodic simulation is compared with the much smaller
open boundary simulation in Fig. 10. In both cases, the
electric field is normalized by the initial upstream condi-
tions as shown in Eq. (18). Although the amplitude Ao of

the initial perturbation was the same in both cases, the
wavelength in Eq. (20) is set by the box size and is thus 4
times longer for the periodic case. As a consequence, the
onset phase takes longer to develop in the large periodic
system as shown in Fig. 10. Nevertheless, after the onset
phase the development is remarkably similar.

There are several important points to emphasize in this
comparison. After the onset phase, the time development
of the reconnection electric field at the x-point is nearly
identical up through the maximum reconnection rate.
After reaching the same maximum value, both systems
indicate a pronounced decrease in the reconnection rate.
One pragmatic criterion for judging the open boundary
model is its ability to effectively mimic a much larger
system. In this regard, it would appear that the open
boundary model is quite successful up through tΩci ≈ 55
where the two curves are nearly identical.

The open and periodic simulation cannot agree in-
definitely, since strong re-circulation effects eventually
dominate the periodic case. The important question is
whether the decline in the reconnection rate for the peri-
odic case is due to the stagnation of the reconnection jets
or due to stretching of the diffusion region. To examine
this question, the ion and electron outflow velocities from
the periodic simulation are shown in Fig. 11. At simu-
lation time tΩci = 75 near the maximum reconnection
rate in Fig. 10, the ion outflow jets in Fig. 11a extends
roughly from x/di ≈ 30 → 65, so there is a large region
available on each side of the x-point for further expan-
sion of the outflow. Thus the reconnection rate in Fig. 10
begins to decrease long before the jets collide. Strong re-
circulation is not apparent until much later as shown in
Fig. 11c, where the counter-steaming ion jets interpene-
trate in the regions 0 < x/di < 20 and 80 < x/di < 100.

In the inflow direction, only one tenth of the domain
is shown in Fig. 11. Thus the transverse boundary is far
removed and does not appear to play any signficant role
over this time interval. Instead, the reduction in the re-
connection rate over the time period tΩci = 75 − 110
appears to be the result of stretching of the electron
diffusion region. Near the maximum reconnection rate,
the spatial scale of the electron outflow jets in Fig. 11b
is rougly ±3di, but the length increases with time ap-
proaching ±15 di at tΩci = 110 in Fig. 11d. An elon-
gated out-of-plane electron current sheet is also observed
(not shown) consistent with the open boundary results.

This large periodic simulation provides strong con-
firmation of the basic results from the open boundary
model. Stretching of the electron diffusion region appears
to be an essential feature of neutral sheet reconnection
and is not an artifact of the open boundary conditions.
Although the rate of stretching is somewhat slower in the
periodic simulation, this is to be expected since even at
early times there is a small back pressure due to the re-
circulation of particles and waves. With the open bound-
ary model, this unphysical back pressure is removed and
the outward convection of reconnected flux is allowed to
proceed in way that is much more realistic.
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FIG. 11: Ion outflow velocity Uix (left) and electron outflow velocity Uex (right) for 100di × 100di simulation with periodic
boundary conditions. Results are shown at tΩci = 75 (top) and tΩci = 110 (bottom) and are normalized to the initial thermal
velocity vths for each species. The black lines denote flux surfaces.

C. Large Open Boundary Simulation

For the 25di × 25di open boundary case, the stretch-
ing of the electron diffusion region was limited by the
box size as shown in Fig. 9. At this point, the electron
outflow jets extend to the outflow boundary and the va-
lidity of the open boundary model is questionable. To
examine the dynamics over longer time scales, it is nec-
essary to increase the size of domain. In this section, an
open boundary simulation is considered with domain size
50di×50di corresponding to 1536×1536 cells and requir-
ing 1.5 × 109 computational particles. The same initial
equilibrium is employed with parameters in Eq. (19).

The basic structure of the reconnection layer is shown
at selected simulation times in Fig. 12. The color con-
tours indicate the out-of-plane electron velocity Uey while
the white lines correspond to ion streamlines and black
lines are flux surfaces. Throughout the duration of the
simulation, pronounced stretching of the electron diffu-
sion region is followed by secondary island production.
The first secondary island is visible at time tΩci = 75 fol-
lowed by another at tΩci = 110 (not shown). After each
island is produced, the diffusion region is broken into two
shorter segments with fast reconnection at each x-point.
The flux within the secondary island grows with time
until the island is expelled by the electron jets, result-
ing in a single diffusion region that again stretches with
time. After the first two islands are ejected, the diffusion
region slowly expands with time as the system relaxes.
However, near tΩci ≈ 365, yet another secondary island
is observed to form in the center of the elongated elec-
tron current layer. The amplitude of a secondary island
is determined by the length of time it is trapped in the

system and some islands grow to much larger amplitude
as shown in Fig. 12e at tΩci ≈ 400. In contrast to the
25di × 25di case in Fig. 9, the electron diffusion region
does not stretch to the box size for this larger system. In-
stead, it appears that the length of the electron diffusion
region is limited by the productions of secondary islands.

The reconnection electric field for this case is shown in
Fig. 13 in the center of the simulation domain and at the
center of the inflow and outflow boundaries. The magni-
tude of the first peak at tΩci ≈ 50 is in good agreement
with the smaller simulation in Fig. 10. Since stretch-
ing of the diffusion region is followed by secondary island
formation, a true steady-state does not exist. Never-
theless, it is interesting to note that the reconnection
rate at tΩci ≈ 350 when the electric field is nearly con-
stant across the system is nearly equal to the quasi-steady
value in Fig. 6 for the smaller system. Furthermore, the
profile of the magnetic field through the diffusion region
at this time is in good agreement with the magnetic field
profile in Fig. 7 at tΩci = 180 for the smaller system,
while the corresponding density profile is approximately
12% lower in the larger system. Thus to renormalize
the rates in Fig. 13 based on the density and magnetic
field upstream of the ion diffusion region, the numerical
factors are essentially the same as already discussed in
Fig. 6 for the smaller system. The time scale for the
three electric field measurements to approximately bal-
ance is about a factor of 2 longer in Fig. 13 than for
smaller system in Fig. 6.
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FIG. 12: Structure of the reconnection layer for 50di × 50di

open boundary simulation at five selected time slices. Color
bar indicates the out-of-plane electron velocity Uey normal-
ized to vthe . White lines correspond to the ion streamlines
and black lines are the flux surfaces.

IV. INTERPRETATION OF RESULTS

Since the new results in this manuscript pose a seri-
ous challenge to the standard model of Hall mediated
reconnection [9–15], it is important to review the rea-
soning that led to this model. The diffusion region for
each species (see Fig. 1) is usually defined by the spa-
tial region in which the frozen-in condition is violated
E+Us ×B 
= 0. It is typically argued that the thickness
of the ion diffusion region is of order δi ∼ di while the
width of the electron diffusion region is of order δe ∼ de.
A Sweet-Parker type analysis is applied to each diffusion
region, starting with the inner electron region. Due to
the Hall dynamics, the electron outflow velocity is lim-
ited by the phase speed of a whistler wave ω/k ≈ kdeVAe

where VAe = B/
√

4πnme is the electron Alfvén speed
based on conditions just upstream of the electron diffu-
sion region. Assuming incompressibility, mass conserva-

tΩci
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FIG. 13: Reconnection electric field from 50di × 50di open
boundary simulation with parameters given in Eq. (19). The
electric field is computed at three location: (1) at center of
the domain near the x-point, (2) at the center of the inflow
boundaries and (3) at the center of the outflow boundaries

tion implies δeU
e

out
= DeU

e

in
where δe is the width and

De is the length of the electron diffusion region. Choos-
ing the wavevector k ∼ 1/δe results in

U
e

in
∼ de

De

VAe . (21)

Thus it is argued that the dispersive properties of the
whistler wave results in a reconnection rate that is inde-
pendent of δe and therefore the mechanism that breaks
the frozen-in condition. Clearly for this argument to
hold, De must also be independent of the mechanism
that breaks the frozen-in condition. Previous results from
kinetic [11] and two-fluid [12] simulations predicted the
electron diffusion region remains microscopic in both di-
rections with De <∼ di. Assuming this is correct, the max-
imum rate permitted by the electrons in Eq. (21) is very
large and there is no electron “bottleneck”. The actual
reconnection rate is then determined by the ions in the
outer region, and the electrons slow down to adjust.

A Sweet-Parker analysis applied to the outer region
implies that the outflow is limited by the ion Alfvén ve-
locity VAi based on the conditions upstream of the ion
diffusion region. Together with mass conservation, this
implies Uin/VAi ≈ di/Di, so that the length of the ion
diffusion region Di determines the reconnection rate. Us-
ing results from large-scale two fluid simulations, it has
been argued that whistler physics near the x-line leads to
a value of Di ≈ 10di resulting in a “universal” reconnec-
tion rate Uin ≈ 0.1VAi independent of system size and
plasma parameters [12, 15]. This model is supported by
large-scale two-fluid simulations and much smaller kinetic
simulations. However, the fluid models contain many ap-
proximations while the previous kinetic simulations were
limited by periodic boundary conditions and system size.

The new results in this manuscript point to a seri-
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FIG. 14: Color contours of (E + Ue × B)y at tΩci = 100 for
the 50di × 50di open boundary simulation. The white lines
are the approximate streamlines for the electron flow.

ous problem with this standard picture. When fully ki-
netic simulations are allowed to proceed over longer time
scales, the length De of the electron diffusion region in-
creases far beyond any previous expectation. It is impor-
tant to emphasize that this result is clearly evident with
both open boundary conditions and with large-scale pe-
riodic simulations. In each case, the electron outflow ap-
proximately satisfies the expectation Uex ≤ VAe. At early
time when De is relatively short, the rate in Eq. (21) is
large enough so that the electrons do not form a bottle-
neck and the ions determine the reconnection rate. How-
ever, as the length of De increases with time, the elec-
trons become the bottleneck and the reconnection rate is
no longer independent of the electron physics.

To make this argument quantitative, it is necessary to
explicitly evaluate the aspect ratio of the electron and
ion diffusion regions. Typically, these are defined by the
spatial region in which E + Us × B 
= 0 as illustrated
in Fig. 14 for the electrons. Inside this region, the non-
ideal electric field is balanced by ∇ · Pe and/or electron
inertia [55]. While the relevant width δe is fairly well de-
fined by this criteria, the length De is more ambiguous
since the non-ideal region in Fig. 14 extends to the entire
length of the electron outflow jet, well beyond the region
of significant electron inflow (see electron streamlines in
Fig. 14). For the purpose of estimating the reconnection
rate based on a Sweet-Parker type analysis, the proper
length for De corresponds to the region of nearly uni-
form inflow as illustrated in Fig. 15. Mass conservation
then implies that the electron outflow velocity is a max-
imum at the downstream edge of the electron diffusion
region. Thus we define δe based on the full width at half-
maximum of E + Ue × B 
= 0 while the length De is
defined by the spatial location of the maximum outflow
velocity. For the example shown in Fig. 15, we obtain
δe ≈ 3.5de and De ≈ 14di. The width of the ion diffu-
sion region δi is defined by the spatial location where the
electron and ion inflow velocities begin to diverge while
the length Di is defined by the spatial location of the
maximum ion outflow velocity.

Using these aspect ratios, the maximum possible recon-
nection rate through each diffusion region is estimated by
assuming a limiting outflow velocity and then imposing
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FIG. 15: Electron inflow velocity Uez (top) and outflow veloc-
ity Uex (bottom) for 50di ×50di open boundary simulation at
time tΩci = 100. The profiles are shown along the horizontal
cuts (black lines). In the upper figure, the cut is at z/di = 0.9
corresponding to the upstream edge of electron diffusion re-
gion, while in the bottom figure the profile is along the center
of the outflow jet (z/di = 0.5). White lines indicate the ap-
proximate electron streamlines. The length of the electron
diffusion region De is defined by the peak outflow velocity.

mass conservation. For the inner region, the electron
outflow velocity is presumably limited by Ue

out ≤ VAe

resulting in a maximum reconnection rate

ER =
(

Bδe

Bo

)2 (
nb

nδe

)1/2 (
mi

me

)1/2
δe

De
, (22)

where for consistency we have normalized by the ion
Alfvén velocity based on Bo and nb [same as Eq. (18)
and all other figures], and Bδe

, nδe
are the magnetic field

and density at the upstream edge of the electron diffu-
sion region. For the outer region, the limiting outflow
velocity is Uout ≤ VAi resulting in a maximum rate

ER =
(

Bδi

Bo

)2 (
nb

nδi

)1/2
δi

Di
, (23)

where Bδi
, nδi

are the magnetic field and density at the
upstream edge of the ion diffusion region. These expres-
sions are fairly sensitive to the upstream value of the
magnetic field and thus the precise value chosen for δe

and δi. To account for this uncertainty, the limiting
rates are evaluated over a reasonable range of widths.
For the 50di × 50di open boundary case, we estimate
δe/de ≈ 3 → 4 and δi/di ≈ 5 → 6 over the duration of
the run. The lengths Di and De for this case are shown
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FIG. 16: Length of the ion Di and electron De diffusion re-
gions (top) and estimates for the limiting reconnection rate
through each diffusion region (bottom) for the 50di × 50di

open boundary simulation. The solid black line in the bot-
tom figure corresponds to the observed reconnection electric
field at the center of the box. The electron limit is evalu-
ated from Eq. (22) with δe/de ≈ 3 → 4 while the ion limit is
evaluated from Eq. (23) with δi/di ≈ 5 → 6.

in the top panel of Fig. 16 as a function of time. Us-
ing these lengths, the limiting expressions in Eqns. (22)-
(23) are compared against the actual reconnection rate
in the bottom panel. The shaded regions correspond to
the degree of uncertainty in specifying the width of each
diffusion region. The limiting expressions are not really
meaningful in the initial phase tΩci = 0− 50 since recon-
nection is just getting started. During the time interval
tΩci = 70 − 120, it appears that reconnection is lim-
ited by the ions, but it is very difficult to estimate De

since there are two secondary islands generated during
this interval. Furthermore, it is doubtful that a simpli-
fied Sweet-Parker analysis can be applied when there are
multiple diffusion regions and dynamically evolving is-
lands. However, during the time interval tΩci = 130−350
there is a single x-point and the actual reconnection rate
decreases in good agreement with the electron limit in
Eq. (22). In addition, the length of the electron diffu-
sion region in the top panel increases by a factor of ∼ 3
over this same interval. These results clearly demonstrate
that the electrons are limiting the reconnection rate due
to the stretching of the electron diffusion region.

In fully kinetic simulations, the self-consistent evolu-

tion of the magnetic field controls the nature of the elec-
tron orbits in the various regions of the layer. Thus the
profile of Bz in the outflow direction may strongly influ-
ence the length De due to the spatial extent of mean-
dering electron orbits. To properly model the electron
diffusion region, it is essential to allow reconnected flux
to be transported away from the x-point in some realistic
fashion. With periodic boundary conditions, the outflow
of reconnected flux is trapped in the system which arti-
ficially constrains the size of the diffusion region. Never-
theless, for very large periodic systems the stretching pro-
cess is clearly evident as demonstrated in Fig. 11d. Since
the reconnected flux is rapidly convected outwards by
the electrons jets, to maintain a short diffusion region re-
quires some mechanism to regenerate sufficient Bz field to
balance the outward convection. In the context of MHD,
this same basic issue has received some attention[6], but
due to the periodic boundary conditions in full PIC the
problem was not previously noticed.

For large systems, it appears that the ultimate length
of the electron diffusion region is limited by the stabil-
ity of the thin electron current layer to secondary island
production. This mechanism may provide a natural limit
on how large the diffusion region De can extend which in
turn will determine the average reconnection rate. In this
scenario, fast reconnection may still be possible provided
the generation of secondary islands remains sufficiently
vigorous. To confirm this hypothesis for physically rel-
evant regimes, it will be necessary to examine how the
stretching process and subsequent island formation scale
with mi/me. Although a complete examination of these
questions are beyond the scope of this paper, initial re-
sults in the following section indicate that the mass ratio
dependence of the stretching process is quite weak.

V. DEPENDENCE ON MASS RATIO

To examine the mass ratio dependence of the new
results, we consider four open boundary simulations in
which the mass ratio is varied by a factor of 100 while
all other plasma parameters are held fixed [see Eq. (19)].
These four cases include mi/me = 1, 6, 25, 100 where the
mi/me = 25 case was already discussed in Sec. III A. The
focus is to examine the initial elongation of the electron
diffusion region after the onset of reconnection, while the
issue of island formation is deferred to a future study.
For the mi/me = 1 case, it was necessary to use a larger
domain 50di × 50di to allow adequate room for expan-
sion of the electron diffusion region over the time inter-
val considered, while the other three cases employed a
25di × 25di domain. The mi/me = 100 simulation re-
quired 1280 × 1280 cells and 8 × 108 particles. In each
case, the resulting development of the reconnection elec-
tric field at the x-point follows a similar pattern. The re-
connection rate reaches a maximum and then decreases
accompanied by pronounced stretching of the electron
diffusion region. The resulting electron outflow velocity
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FIG. 17: Electron outflow velocity Uex for the mi/me = 100
open boundary simulation at tΩci = 52. Black lines denote
flux surfaces and the box size is 25di×25di. Initial conditions
are the same as the low mass ratio case [See Eq. (19)].

is shown for the mi/me = 100 case in Fig. 17 for a sim-
ulation time tΩci = 52 just past the peak reconnection
rate. From a visual inspection, it is clear that the spatial
extent of the electron outflow jets for the mi/me = 100
case is comparable to the mi/me = 25 case shown in
Fig. 8e, indicating the mass ratio dependence is weak.

To examine these results in more detail, the length
of the electron diffusion region was calculated for each
case using the method described in Sec. IV. For a given
simulation time, the resulting length De scales approxi-
mately as (me/mi)1/4. Thus it is convenient to normal-
ize the results in terms of the dimensionless parameter
D∗

e = (De/di)(mi/me)1/4 to organize the data. As shown
in the top panel of Fig. 18, the measured length of the
electron diffusion region is well described by this scaling
over the interval considered. In each case, the length De

is not measured at early time since the diagnostic is not
very meaningful during the onset phase. The observed
reconnection electric field at the x-point is shown in the
bottom panel of Fig. 18 for each case. In addition, the
limiting reconnection rates through the ion and electron
diffusion regions are estimated for the mi/me = 100 case
using the method described in Sec. IV. These results
demonstrate that the electrons remain the bottleneck
controlling reconnection at mi/me = 100. Furthermore,
the weak scaling of De with (me/mi)1/4 suggests that
meandering electron orbits play a significant role in de-
termining this length. In contrast, the width δe measured
by the full width at half-maximum of (E+Ue×B) scales
approximately with (me/mi)1/2 indicating the electron
skin depth is playing an important role [31]. The den-
sity factor in Eq. (22) is essentially the same in all cases,
while the upstream magnetic field scales approximately
as (Bδe

/Bo)2 ∝ (me/mi)1/8. Putting these factors to-
gether, the limiting reconnection rate for the inner region
in Eq. (22) scales approximately as ER ∝ (mi/me)1/8

which is in good agreement with the observed peak re-
connection rates in Fig. 18.

It should be emphasized that these scalings only ap-
ply to the initial expansion of the diffusion region after
the onset of reconnection in a fairly small system. For
longer intervals and/or larger systems the formation of

tΩci

E
R

D
∗ e

mi/me

FIG. 18: Length of the electron diffusion region (top) and
observed reconnection electric field at the x-point (bottom)
from 4 different open boundary simulations with mass ratio
indicated. In the top panel, the length is normalized by D∗

e =
(De/di)(mi/me)

1/4. The shaded regions correspond to the
limiting rates for the mi/me = 100 case. The electron limit
is evaluated from Eq. (22) with δe/de ≈ 3 → 4 while the ion
limit is evaluated from Eq. (23) with δi/di ≈ 4 → 5.

secondary islands will complicate the picture and there
may be no simple scaling. For example, the decrease in
D∗

e at tΩci ≈ 65 for the mi/me = 1, 6 cases in Fig. 18
corresponds to the formation of small secondary islands.
As a consequence, the reconnection rate is modified. The
mi/me = 25 case did not produce a secondary island un-
til tΩci = 95 while the mi/me = 100 case did not produce
any islands over the interval considered. Thus the forma-
tion of secondary islands is clearly sensitive to the mass
ratio, but a detailed examination is beyond the scope of
this manuscript.

Finally, the limit mi = me deserves special consid-
eration since the Hall term cancels exactly, there are
no whistler waves [20] and for Ti = Te there is only
one diffusion region. In this limit, we have performed
open boundary simulations with domain sizes as large
as 150di × 150di over durations as long as tΩci = 1000.
The results show stretching of the diffusion region fol-
lowed by secondary island formation throughout the du-
ration of the simulation (cycle repeated 9 times). The
average reconnection rate remain quite fast ER ≈ 0.08
even for very large systems. To confirm these results, we
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have performed periodic simulations with domain sizes as
large as 500di × 500di, and the results also show strong
stretching of the diffusion region followed by the robust
formation of secondary islands. This again demonstrates
that the new results are not an artifact of the boundary
conditions. Furthermore, these results suggest that the
essential physics of reconnection for the mi = me limit
may in fact be qualitatively similar to the mi/me = 25
case already discussed.

VI. SUMMARY

Periodic boundary conditions severely limit the dura-
tion in which kinetic simulations of magnetic reconnec-
tion are physically meaningful due to the re-circulation
of particles and the resulting back pressure on the dy-
namics. The new open boundary model eliminates these
artificial effects and allows magnetic flux to enter the
system as needed and to freely convect outwards from
the x-point. This approach effectively mimics a much
larger system and permits the kinetic structure of the re-
connection layer to develop over time scales much longer
than have ever been simulated with a fully kinetic ap-
proach. While at early times the peak reconnection rates
are in excellent agreement with previous periodic studies
[29–32], the evolution over longer intervals is entirely dif-
ferent. The essential reason for these new results is that
the length of the electron diffusion region De does not re-
main microscopic. Instead, the rapid outward convection
of magnetic flux due to the electron jets leads to a reduc-
tion in the Bz field, which in turn leads to further expan-
sion of the jets. As a consequence, an extended electron-
scale current sheet is formed that periodically becomes
unstable to secondary island generation. No pileup of
magnetic field is observed, contrary to the MHD models
where stretching of the diffusion region is associated with
flux pileup. To summarize the major conclusions:

• The length of the electron diffusion region does not
remain microscopic, but gradually increases with
time to De ∼ 25 di for the parameters considered.

• As the length of the electron diffusion region be-
comes large, the electrons become the bottleneck
limiting the reconnection rate.

• Reconnection in a neutral sheet is inherently time-
dependent. Fast reconnection may still be possible
provided that the generation of secondary islands
remains viable for a given parameter regime.

• The dependence of the reconnection dynamics on
system size is no longer simple. For small systems,
the expansion of the electron diffusion region is lim-
ited by the box size and the generation of islands
is suppressed. For large systems, the maximum
length of the electron diffusion region is limited by

the stability of the extended electron current sheet
to secondary island formation.

• After the onset of reconnection, the initial expan-
sion of De scales as (me/mi)1/4 indicating the mass
ratio dependence of the stretching process is weak.

These results are not consistent with the standard
model of Hall mediated fast reconnection. Despite ev-
idence that the Hall term plays a role in localizing the
diffusion region in fluid simulations [12, 15, 16], it does
not appear to play the same role in fully kinetic sim-
ulations. However, the fluid models contain many un-
controlled approximations. To fully capture the physics
reported in this manuscript it appears that fully kinetic
simulations may be required. It seems unlikely that hy-
brid codes [24, 27] can properly describe the dynamics
but even implicit full PIC codes [32] may miss essential
electron physics if the inner layer is not fully resolved.

From these initial open boundary simulations, it ap-
pears the maximum length of the electron diffusion re-
gion is controlled by the stability of the elongated current
sheet. This result suggests a new hypothesis in which fast
reconnection may still be possible so long as the process
for generating secondary islands remains vigorous for re-
alistic parameter regimes. While the island formation is
probably related to an unstable tearing mode, the struc-
ture of the electron layer is quite different than a Harris
sheet (bifurcated current profile, normal component of
B, velocity shear, electron anisotropy, etc.) so it is diffi-
cult to directly apply previous results. To understand the
physical relevance of these new results, future work must
clearly address the mass ratio dependence of both the
stretching process and the secondary island formation.

Finally, it should be emphasized that all the results
in this manuscript are based on 2D simulations which
preclude the possibility of plasma instabilities in the out-
of-plane direction. Potential driving factors include in-
tense electron streaming, velocity shear, anisotropy, and
density gradients. These instabilities may dramatically
alter the dynamical evolution of the reconnecting layer,
and could potentially play some role in localizing the dif-
fusion region. Thus, to fully understand the physics of
collisionless reconnection remains an enormous challenge.
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