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A new detailed first principle kinetic theory for electrons is presented which is neither a classical fluid 
treatment nor an expospheric calculation. This new theory illustrates the global and local properties of the 
solar wind expansion that shape the observed features of the electron distribution function re, such as its 
bifurcation, its skewness, and the 'differential' temperatures of the thermal and suprathermal sub- 
populations. Our approach starts with the Boltzmann equation and retains the effects of Coulomb 
collisions via a Krook collision operator without recourse to wave-particle effects. We conclude that 
Coulomb collisions determine the population and shape of fe in both the thermal (E < k T) and 
suprathermal (E > kT) energy regimes. We find that electrons with E > 7kT constitute a special 
subpopulation of the suprathermals, insofar as Coulomb collisions are concerned; these we call 'extra- 
thermals.' The electrons in the thermal portion of f• have undergone •10-20 Coulomb collisions for 
cumulative momentum transfer en route to the observer at 1 AU; this population is thus more removed 
from the properties of coronal electrons than the suprathermal population. This latter group retains a 
strong memory of coronal conditions, since they have undergone only a few n omentum transfer colli- 
sions. The thermal population is most nearly in collisional contact with the local dynamics (compressions, 
rarefactions, etc.) of the solar wind. The suprathermal portion of ]• is determined by Coulomb collisional 
interactions with the distribution of solar wind material on radial scale of the heliopause itself. In this 
respect the suprathermal portion of f• is found to be responsive to the consequences of the global 
dynamics of the solar wind expansion. We find that this subpopulation is an attenuated vestige of 
collisional populations deep in the corona (1.03-10 Rs) which has been redistributed via Coulomb 
multiple pitch angle scattering on magnetically open field lines. The suprathermal particles moving 
toward the sun are computed to be observed as a result of Coulomb-collision-induced backscattering at 
larger (1-10 AU) heliocentric distances than that of the observer. Based on this theoretical picture, 
quantitative estimates for the partition of thermal and suprathermal phase density, the break in the 
velocity distribution, and the magnitude of the skewness (heat flux density) agree well with those typically 
observed near I AU. These calculations predict that the extrathermal fraction of the phase density, the 
extrathermal temperature, and the net heat flux density carried by electrons should be anticorrelated with 
the local bulk speed in quasi-steady-state flows and that the radial variation of extrathermal temperature 
inside 1 A U should be essentially independent of heliocentric distance. Our work also shows that the 
observation of suprathermal particles cannot be taken as a priori evidence for in situ wave particle 
interaction(s), since we can theoretically calculate a suprathermal population of solar wind electrons at 1 
A U by assuming wave-particle interactions are not present anywhere in the heliospheric cavity; the 
combination of inhomogeneity and the Coulomb 'window' above E* = 7kTc naturally gives rise to this 
leakage of nonlocal collisional populations in superposition with local collisional populations. This work 
suggests that the local cause and effect precept which permeates the physics of denser media must be 
relaxed for electrons in sparse and radically inhomogeneous plasmas such as those found in the solar wind 
between the lower corona and the interstellar medium. The local form of transport laws and equations of 
state (e.g., Q = -KVT, P = NkT), which are familiar from collision-dominated plasmas, must be replaced 
with global relations that explicitly depend on the relative position of the observer to the boundaries of the 
system. 

1. INTRODUCTION 

In this paper (paper 1) we suggest that the typical velocity 
distribution function of solar wind electrons in a quasi-steady 
flow is shaped primarily by the properties of Coulomb colli- 
sions and the 'smooth' macroscopic forces implied in the solar 
wind expansion. Following a straightforward mathematical 
procedure, we illustrate how some of the controlling effects, 
both local and global, are reflected in the in situ observations. 
In companion papers we discuss (paper 2) the consequences of 
this theory and its comparison with known experimental facts, 
(paper 3) the impact of this approach on the question of 
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transport phenomena (such as heat flows, viscous effects, etc.) 
in the heliosphere and the relation of the current formulation 
to canonical transport methods, and (paper 4) a mathemati- 
cally more rigorous formulation of the problem discussed in 
paper 1. 

Historically, theoretical treatments for solar wind electrons 
have variously approximated the electrons either (1) as part of 
a one-fluid model of the wind [Parker, 1963], (2) as a separate 
fluid interacting via Coulomb (local) momentum transfer with 
the ions [Hartle and Sturrock, 1968], or (3) as an exospheric 
('collisionless') population above some radial distance (called 
the 'baropause' or 'exobase') (Jockers [1970], and independ- 
ently by Lemaire and Scherer [1971]). 
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Ogilvie and Scudder [1978] showed with in situ measure- 
ments between 0.45 and 0.9 AU (Feldman et al. [1978] at 1 AU 
concur) that the local mean free path •, for scattering of 
thermal electrons via Coulomb effects was less than the con- 

ventionally defined scale height H, implying that Coulomb 
effects could not be neglected even within 1 AU. Therefore the 
propagation of electrons neglecting particle-particle collisions 
from a baropause to the in situ observer is not the correct 
kinetic description of the solar wind expansion insofar as 
electrons are concerned. However, Ogilvie and Scudder [1978] 
indicated that )t/H was not very small in comparison with 
unity, indicating that the fluid treatment was not justified 
either. It is therefore fruitful to explore the effects of Coulomb 
collisions in shaping the in situ distributions, by not making 
either the exospheric or fluid approximation. 

It has been previously realized that the Knudsen number 
K = )t/H, as determined a posteriori from fluid solar wind 
models, can be so large in some regions as to invalidate the 
conduction law used to obtain the solution. Until recently this 
inconsistency has been thought to be relatively unimportant, 
since K was thought to be small and the solar wind expansion 
hydrodynamic in the initial acceleration phase and somewhat 
irrelevant once the flow had become supersonic and momen- 
tum dominated [e.g., Griffel and Davis, 1969]. However, the 
discussion of Durney and Hundhausen [1974], Durney and 
Pneuman [1975], Kopp and Orrall [1977], Singer and Roxburgh 
[1977], and Lemaire [1978] highlight the renewed criticism of 
using collision-dominated transport coefficients (small Knud- 
sen number approximation) for the solar wind even within the 
strong initial subsonic acceleration over coronal holes. The 
last reference emphasizes that exospheric theory (K 
could also be improved with the added effects of collisions. 

Since the original work of Montgomery et al. [1968] it has 
been experimentally established that the electron velocity dis- 
tribution function re(v) was not a simple Maxwellian. The 
reported phase density in the suprathermal regime signifi- 
cantly exceeded that predicted by the best fit (bi-)Maxwellians 
to the thermal regime of re. The thermal and suprathermal 
subpopulations of the solar wind electrons were subsequently 
named the 'core' (or cold) and 'halo' (or hot) components, 
respectively, by Feldman et al. [1975], who modeled the elec- 
tron phase density as a superposition of mildly anisotropic, 
relatively drifting, bi-Maxwellians with different temperatures, 
densities, and bulk speeds. Recently, Rosenbauer et al. [1976, 
1977] showed that a narrow (•20 ø) magnetic-field-aligned 
'strahl' (or ray) can occasionally be observed in the supra- 
thermal phase density. 

The observations of Ogilvie and Scudder [1978] (Feldman et 
al. [1978] confirmed) also indicated that the local scattering 
mean free path (mfp) for halo electrons was long in com- 
parison with the local density scale height. In the customary 
sense of the word, the halo particles were locally 'collisionless.' 
Nevertheless, there is some weak, omnipresent, unavoidable 
Coulomb interaction with the thermal plasma. The supra- 
thermal electron population of fixed energy is generally ob- 
served in all octants of velocity space with comparable phase 
density [Montgomery et al., 1968; Scudder, 1970; Ogilvie et al., 
1971 ]. Feldman et al. [ 1974] have suggested that wave-particle 
interactions are the reason for their 'ubiquity.' 

The theory of electron-wave interactions as contrasted with 
instability onset calculations [Forslund, 1970; Gary et al., 1975; 
Singer and Roxburgh, 1977] is not well developed. Since the 
original suggestion of Parker [1962], wave-particle inter- 
actions [Pines and Bohm, 1952] have been invoked to reconcile 

the predictions of collisionless plasma orbit theory with the 
observed anisotropy characteristics of ions [Neugebauer and 
Snyder, 1966] and electrons [Feldman et al., 1974]. However, 
the important issue not to lose sight of is the relative impor- 
tance of wave-particle and collisional effects as emphasized by 
Hundhausen [1968]. In this connection it is important to em- 
phasize from the beginning that collisional frequencies are 
strong functions of particle speeds and that real frequencies 
associated with collective instabilities should be compared 
with the relevant speed regime collisional frequency from 
which the 'wave' derives its free energy. 

The origin of the spectrally distinguishable halo sub- 
population of solar wind electrons was initially suggested by 
Ogilvie and Scudder [ 1978] when they extrapolated the electron 
measurements made by the Mariner 10 plasma science experi- 
ment of the radial variations (0.45 ( R ( 0.9 AU) of the core 
and halo (differential) 'temperatures': 

1 (dlnf) -• T - -•-•s dE 
to determine the radial positions where these best fit variations 
predicted a common temperature. Depending on the assump- 
tions, this zone of common (differential) temperature was 
between 2 and 15 Rs. The suggestion of that paper was that a 
fractionation process of the antecedents of halo and core sub- 
populations had begun in this radial range. The subsequent 
approximate experimental inference of the origin of the strahl 
portion of the halo in very high speed flows [Feldman et al., 
1978] confirms the approximate location of this fractionation 
process. 

We shall demonstrate below, by explicit calculation, that the 
suprathermal electrons with E • 7kTc observed near 1 AU are 
an attenuated vestige of collisional populations deep in the 
corona (1.03 to •15 Rs) which have been redistributed via 
Coulomb multiple small angle pitch angle scattering. The cu- 
mulative spatially integrated effects of Coulomb pitch angle 
scattering are sufficient to explain the observed proportion of 
suprathermal electrons both fore and aft along the local mag- 
netic field. We show that the halo population is shaped by the 
spatially integrated nonlocal (i.e., global) features of the he- 
liospheric cavity--such as its size, its large-scale magnetic to- 
pology, and the spatial variation of its contents--especially 
near the extremities of the solar wind expansion. In this latter 
sense, in situ electron observations allow remote observations 
of important regimes of the solar wind expansion which are 
presently not accessible. 

Terminology 

It is appropriate to comment on our use of the word 'supra- 
thermal' and other new terms we wish to use in the remainder. 

From the latin supra, meaning above, the clear intent of 'su- 
prathermal' is to delineate those particles with energy larger 
than E = kBT (where kB is Boltzmann's constant), which is the 
kinetic energy of a particle moving with the most probable 
speed. For electrons we operationally assign the 'core' temper- 
ature to delineate the most probable speed. For particles with 
œ • k•T•ore it is consonant with the literature to discuss this 
entire range as the suprathermal domain. In paper 2 we shall 
show that electrons with kinetic energy E • 7kTc are a special 
subset of the suprathermals insofar as Coulomb collisions are 
concerned. These particles have energies sufficiently beyond 
those of the thermal electrons as to have a minimal local 

interaction with them. Moreover, as is shown below, these 
extrathermals have also come from substantially beyond the 
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position of the observer. For clarity we have labeled this group 
as the 'extrathermals,' noting that extra means beyond in 
Latin. The particles of intermediate energies (1 < E/kaTe • 7) 
are most suitably labeled as 'transthermals' (trans meaning 
across) for two reasons: (1) they bridge the energy interval 
between subthermal and extrathermal populations and (2) 
these electrons are populated from collisional antecedents with 
nonnegligible contributions distributed across a substantial 
portion of the heliosphere. We shall use the term subthermal, 
thermal, transthermal, and extrathermal to delineate specific 
energy regimes in the above sense; when we do not wish to 
distinguish between transthermal and extrathermal, we will 
use the word suprathermal. As is discussed below, we do not 
regard the term 'suprathermal' as being synonymous with that 
suggested by Parker and Tidrnan [1958] for particle popu- 
lations generated by local Fermi mechanism and/or betatron 
action. 

Organization 

We outline the structure of this paper to orient the reader. 
The theoretical transport problem is posed in a formulation 
section (section 2). We next discuss formal solutions (section 
3), which give the flavor of the explicit solutions whose details 
can only be obtained after the mathematical considerations 
(section 4) and implementation (section 5). The outcome of 
two 'realizations' of the formal solution are given in a results 
section (section 6), followed by a discussion, prediction, and 
conclusion section (section 7). 

2. FORMULATION 

For the present we desire to estimate in the simplest possible 
fashion the consequences of a physically complete picture of 
Coulomb collisions as they would shape and determine in situ 
observations of electrons in the solar wind without considering 
wave-particle scattering. The advantages of the present formu- 
lation include simplicity and ease of physical interpretation. 
Estimates of the importance of Coulomb interactions can be 
made simply by evaluating integrals rather than by solving 
partial differential equations. In this approach the solution of 
the scattering problem is available in closed form and has a 
conceptually simple interpretation with predictions which can 
be checked against the variability and correlations of local 
observations; it also allows definite predictions at other helio- 
centric distances. 

The basic equation governing our discussion is the Boltz- 
mann equation 

_ Of F Of •f df Of •_ v. +-- - (1) dt- 3t '• m 3v fit eo•o• 

where the symbols have the usual meaning: f is the particle 
distribution function at coordinates (r, v) in the phase space, F 
are the 'smooth' forces experienced by the particle, and fir/fit is 
the Boltzmann collision term which is given explicitly by 

-fdv/fdn 
where v, vx are the pr•collision velocities and the primed v', vx' 
are the postcollision velocities. 

The first term of (fir/fit)] eom•o• determines the loss rate of f 
from (r, v) as a result of the scattering of particles with pr•- 
collision velocities v', vx'. The second term of the collision term 

describes the local replenishment of phase density at (r, v) as a 
result of scattering into the local phase space volume element. 
The differential scattering cross section is given by da/d•. 

For purposes of the estimates in this paper we shall approxi- 
mate the collision term in the Boltzmann equation in the form 
proposed by Bhatnagar et al. [1954] and extended by Gross and 
Krook [1956]; this approach is known variously as the BGK, 
Krook, or relaxation time approximation (cf., e.g., Reif 
[1965]); the approximation is mathematically exceptionally 
simple and physically not only instructive but has been shown 
to be quite satisfactory in other comparable physical situa- 
tions. 

As was clearly realized by Gross and Krook [1956], this 
approximation is not restricted to the small mean free path 
transport case which leads to the Chapman-Enskog type anal- 
ysis. Therefore our use of the relaxation time approximation is 
not synonymous with the short mean free path limit (vr/L << 
1, where v is the particle speed and L is a characteristic scale 
length of the gradients). 

The inadequacies and simplicity of the Krook model arc 
well known [cf. Gross and Krook, 1956; RawIs et al., 1975]. As 
it is currently used, it does not strictly conserve density, mo- 
mentum, or energy. As the scattering time r wc introduce is 
that for 90 ø cumulative pitch angle deflection, and as (i•f/ 
fit) [ Coulomb is more complicated than this, and as (bf/•t)lKrook 
depends on an a priori guess of fn, this approximation cannot 
be a priori made to describe with equal fidelity the true nature 
of the Coulomb interaction between 'test' electrons of all 

energies and the background plasma. Without the use of a 
more sophisticated Fokker-Planck collision operator of the 
type suggested by Rosenbluth et al. [1957] (the RMJ model), it 
seems unwarranted to pursue the rigors, within the Krook 
model, of conserving quantities determined by various weigh- 
ted velocity space averages over the entire velocity distribution 
function. Nevertheless, the current approximation behaves for 
low (subthermal) test electrons in the same qualitative manner 
as the correct treatment (cf. section 6), while also allowing 
estimates to be made of scattering effects at higher (supra- 
thermal) energies. The present analysis already yields informa- 
tion that illustrates some global features of electron transport 
in an inhomogeneous plasma that is fully ionized. 

Consider at some point r the (unknown) electron phase 
density f(r, v, t). Then in Krook's approximation, f obeys the 
equation 

df Lf - fn(r, v)] 
dt r(r, v) 

(2) 

By comparing the structure of (2) with that of (1) we obtain 
the correspondences: 

(3) 

f(v')f(vl')lv' - vl 

) dr1 d• 
where it is clear that fn and r are functionals of the unknown 
distribution function. 

The Krook approximation to the collision operator bf/bt 
not only retains the formal structure of the Boltzmann oper- 
ator, but allows, by a judicious choice of fn(r, v), a linear- 
ization of the full transport equation that is very instructive. 
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We shall now examine some properties of (•f/•t)]Krook to 
understand the role of f•(r, v) in this approximation. 

In the special circumstance of a uniform system where elec- 
tric fields and gravity are unimportant and the distribution 
function is perturbed isotropically in the proper frame velocity 
space and uniformly in configuration space and r is a simple 
constant independent of space or velocity, then (2) reduces to 

df •f (f - f•) 
dt tg t r (4) 

The solution of (4) is 

f(Ivl, t) = f(Ivl, to) + [f,,(Ivl) - f(Ivl, to)] 

ß [1-exp((t-to)) 1 (5) 7' 

where for this example r is assumed independent of time t. 
From this example it is clear that f• should be interpreted as a 
final state of the relaxation process. The temporal relaxation 
given by (5) is caused by (f - fn)lto • 0 (i.e., the departures of 
the initial from the final state) and by the evidence for a finite 
relaxation time r. 

The preceding discussion was for an extremely special situa- 
tion for the Boltzmann evolution operator with a collision 
term approximated after the model proposed by Krook and 
collaborators. By contrast we require the steady state solution 
of (2) (•f/•t = 0) for the more general situation, in the 
expanding solar corona where there are nonnegligible forces 
and spatial inhomogeneities and speed-dependent collision fre- 
quency. This circumstance is far more common than the sim- 
plifying example of (5). Nevertheless, that example has been 
instructive in supplying insight into the meaning of fn which 
may be carried over into the more general case we wish to 
pursue: namely, if f(r, v) = fn(r, v), then this is a stationary 
solution of the Boltzmann equation with a Krook approxi- 
mated collision operator. 

The distribution fn(r, v) represents the time-independent 
spatially inhomogeneous final state toward which the relaxa- 
tion mechanism, with scale time r, drives an initially perturbed 
distribution. Of course, fn is not known a priori; however, 
using the in situ tendency for the thermal electrons to be nearly 
Maxwellian [Montgomery, 1968; Feldman et al., 1975; Ogilvie 
and Scudder, 1978], we make an empirical ansatz for the final 
profile in zeroth-order approximation: 

f(o, = f•(r, Iv I) • f•io, = 
n(r) 

a-a/•'(2k B To(r)/rne) a/•' 

( rnelv- U(r)l ß exp - 2kB To(r) (6) 

n In [ 1.2 X I(P(T•/•'Te)/n '/•'] s-' (8) Pep = 0.38Te8/•. 
and where T is the harmonic temperature of Te and To; the 
speed I wl - w is the particle speed in the proper frame. The 
root mean square (rms) thermal speed of species a is given by 

w•..a = (3k•Ta/m•) '/•' (9) 

The statistical effects of the thermal spread of the ambient 
targets is contained in the function 05 of (7), defined by 

= 3 )1/2 WT,p 3w: / 
3 + exp ( 2 

l[erf ((3•) x/: •)(1 +T 

+ ½xp -T 
A more general form for • is given by Rossi and Olbert 

[1970]. In that expression, • is a functional of the ambient 
electron and ion distribution functions f, and ft. The ex- 
pression given in (10) has been evaluated with local Max- 
wellians for both electrons and ions. 

Brandt and Cassinelli [1966] showed the importance of the 
velocity dependence of the Coulomb process in providing the 
first exospheric calculation of the coronal expansion with a 
supersonic asymptotic flow state. The velocity dependence of • 
implied different energy particles were 'free' at different radial 
distances. They used the concept of energy-dependent exo- 
bases for subsequent 'collisionless' egress from the coronal 
base. This solution (although using the inaccurate Pannekoek- 
Rosseland polarization potential) resolved the controversy be- 
tween Chamberlain [1960] (exospheric, single exobase, solar 
breeze) and Parker [1963] (hydrodynamic, collision domi- 
nated, solar wind) that seemed to suggest that the nature of the 
solar expansion depended on whether one adopted a corpuscu- 
lar or a continuum description of the mass loss. 

3. INFORMATION FROM FORMAL SOLUTiONS 

Although formal solutions are rarely directly amenable to 
calculation, they often compactly display the conceptual char- 
acter of the more complicated explicit solutions. We proceed 
to give several instructive equivalent formal solutions to the 
Boltzmann equation, with the Krook approximated collision 
term, in order that the reader obtain the flavor of the more 
complicated explicit computational form of the solutions 
which we discuss in the next two sections. 

The formal solution of (2) at the observer's time t is 

which is a convected Maxwellian distribution with spatially 
varying density n(r), bulk velocity U(r), and temperature To(r). 

The relaxation process visualized here is characterized by 
the familiar rate of Coulomb collisions vo between 'test' elec- 
trons and 'targets,' i.e., the positive ions and other ambient 
electrons. Recalling that vo -- l/r, we have (cf., e.g., Rossi and 
Olbert [ 1970]) 

1 PepWT,eao•(W/WT,e) 
-- -• •'c = (7) 

Iwl 

This is the rate at which phase density is scattered out of the 
observer's phase density element, where in cgs units 

f(t) = fn(to) exp [-S(t, to)] 

where 

+ • exp [-S(t, t')]fn[t']/r[t'] dt' (11) 

•t t dt' S(t, t')-- , •[7] (12) 
and where the indicated path integrals • are performed follow- 
ing the trajectory of a representative point of an electron in the 
six-dimensional phase space. 
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Noting that $(t, t) -- 0 and that 

dS(t, t') = r[t'] Vt' < t (13) 
and, with the definitions 

So -= S(t, to) aS -- S(t, t') (14) 

(11) may be recast in a number of illuminating ways: 

f(t) =/alto) cxp (-So) + exp (--AS)fn[t'(A$)] d(A$) 

which, upon integration by parts, becomes 

f(t) = fn(AS = 0) + exp (--AS) d(AS) ' d(AS) 
(16) 

or, equivalently, 

•f /•tAS=So) f(t) = fn(AS-- 0) + exp (-AS[fn(t'[AS])])a[fn] 
• fn (AS --- 01 

(17) 

Equations (11) and (15)-(17) are all equivalent, highly com- 
pact, formal answers to the transport question posed at the 
beginning of this section. Before discussing the content of 
these solutions, we need a physical interpretation of the quan- 
tity AS. 

The quantity AS is the collisional analog of the optical 
depth of radiative transfer. We will refer to this intrinsically 
nonnegative quantity as the collisional depth of the observer 
relative to the source. It is a cumulative (•) counter of colli- 
sional cycles (l/r) experienced by the representative point of a 
particle in the phase space element during its motion [at t" 
from the departure at t' to the present, at t. The quantity exp 
(-/xS) which occurs throughout these equations can be 
thought of as a normalized survival probability upon transit- 
ing the collisional depth AS. 

To appreciate some of the essential physics of the nonlocal 
terms of (15)-(17), we must discuss electron kinematics and 
the use of collisional depths and boundary conditions. 

The most probable speed of the electrons throughout the 
solar cavity is many times the typical solar wind speed. Hence 
nearly all electrons are kinematically able to transport infor- 
mation in both directions along a magnetic tube of force. 
Because of this mobility it is by no means obvious where the 
electron has been in the solar system preceding its detection. 
For electrons the in situ observation from a given collisional 
depth/xS of the velocity distribution function is a synthesis of 
particles and information coming from both fore and aft along 
the local magnetic field. 

Collisional depths, like their optical counterparts, are in- 
trinsically nonnegative. When considering contributions to the 
local distribution from a given collisional depth /xS, we are 
considering contributions from particles which at time t' < t 
were either inside or outside the observer's radial position (cf. 
Figure 1). A corollary to these comments is that all electrons 
observed at r at time t probably did not leave the sun at, or 
even nearly at, the same time, to, in the past. Rather, the 
observed f(r, v, t) is the superposition (i.e., an integral) of all 
the surviving probability densities whose representative elec- 
trons have accessible trajectories to the current observer's 

point (r, v) in the full six-dimensional phase space. Depending 
on the collisional depth and its variation with energy and pitch 
angle and the temporal boundary conditions at the source 
layers, f[AS(t')], the observed distribution will be more or less 
reflective of the coronal or collisional conditions along the 
local observer's magnetic tube of force. 

Thus (15) has the following physical content: the velocity 
probability distribution f(r, v, t) observed at time t is the sum 
of two parts. The first, on the right-hand side of (15), the so- 
called boundary term, is the contribution to the currently 
observed f that has survived extinction from the space time 
boundary of the system to the observer. The second contribu- 
tion is the folded sum (5•) over all intermediate collisional 
depths 0 < AS < So of f•[t'(AS)], weighted by their respective 
attenuations, exp (--AS), between source and observer. (Re- 
member that for a given AS there are two positions along the 
tube of force from which 5• has contributions: one effective 
location outside, one inside that of the observer (cf. (35a), 
(35b)).) 

Equation (16), although entirely equivalent to (15), gives a 
slightly different physical description to the observed distribu- 
tion: the first term on the right-hand side of (16) is the 'local' 
term, since it is the source distribution at collisional depth zero 
from the observer; the second term describes the corrections to 
the local sources as properly attenuated signals of the variabil- 
ity of the nonlocal distribution with differential changes in the 
collisional depths from the observer. This formal solution (16) 
is the point of departure for our discussion of paper 3. Equa- 
tion (17) follows from (16) by change of variables. Note from 
(17) that if the system is everywhere homogeneous, then fn(AS 
- So) - fn(/xS - 0) and (17) collapses to f - fn(/xS). This is 
the special case of thermodynamic equilibrium. Conversely, if, 
for example, the electron temperatures at AS = So, 0 are not 
equal, then the 5• term of (17) is not equal to zero (since the 
integrand is positive definite). The corrections to the local 
population (fn(AS = 0)) that are observed are the signatures of 
spatial inhomogeneities of fn in the system. 

From these formal solutions we see that the local observa- 

tions represent a superposition of phase densities displaced 
from the observer (AS •: 0) folded with the probability that 
these phase space elements can 'survive' between their colli- 
sional origin and the observer. This is a mathematical state- 
ment of the dynamical accessibility of the electrons to the 
observer. In order to evaluate these solutions further, some 
mathematical arguments are required. 

4. MATHEMATICAL INTERLUDE 

The discussion which follows pertains to the directions of 
information flow to a given point in (r, v) space. 

In order to 'reassemble' the Lagrangian style solutions avail- 
able from (15) for the evolution of different phase space ele- 
ments into an Eulerian description for the velocity distribution 
at a given position r, as t • oo, we must categorize classes of 
trajectories in steady state which are accessible to the position 
of the observer. 

In this connection it is important to note that electrons of 
energies less than '-, 10 keV have gyroradii which are extremely 
small by astrophysical scales at any heliospheric distance. It is 
thus difficult for solar wind electrons to drift perpendicular to 
the magnetic lines, and therefore excepting the effects of colli- 
sions, the electron guiding centers reside on the line of force on 
which they were initially injected. Although collisions can 
enhance crossfield diffusion, this effect is negligible at ro = 1 
AU, since D,/Dll '" 10 -•, where D•.11 are the collisionally - 
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Fig. 1. Idealized magnetic topology. For electrons the arc length, 
time coordinates (l*, t*) are synonymous with the space time position 
(r*, t*). Note that script els of the figure have been typeset in the text 
as lower case italic els. 

induced diffusion coefficients transverse and longitudinal to 
the local magnetic field. This ratio scales as 

O i/O ,, [ Ro = T(Ro ) / N(R )B(Ro ) (18) 
This ratio is approximately 10 -•'• in the corona and is small 
throughout the hellosphere. Thus the history and future of the 
guiding center motion of electrons in the solar wind is in- 
trinsically one dimensional and determined by the topology of 
one given line of force. Nevertheless, the guiding center mo- 
tion does not behave like collisionless theory would indicate; 
rather, there are collisional modifications within this one-di- 
mensional motion. Accordingly, we adopt an Archimedian 
magnetic topology (Figure 1) after Parker and use the arc 
length l* along the given lines of force interchangeably with 
the corresponding radial distance r* of the observer from the 
sun's center. As far as the motion of electrons is concerned, the 
history and future of the electron trajectory is along the given 
tube of force that passes through the observer's position at (r*, 
t*). The discussion which follows assumes the fluid flow to be 
time independent in the corotating frame. In paper 2 we will 
discuss to what extent the violation of these assumptions will 
change our results. 

We introduce some diagrammatic methods for listing the 
types of particle trajectories that can gain access along a single 
tube of force to the observer's phase space volume element 
drdv about (r*, v*). In Figure 2 we illustrate representative 
trajectories of four types of contributions to the locally ob- 
served distribution function f. There are two classes of contri- 
butions to the forward pitch angle portion, f+, of f (Figure 2a): 
(1) those contributions with ultimate 'source' in a collisional 
distribution outside (/>) of the position of the observer (l*) for 
times (t>') prior to the time (t*) of detection and (2) those 
contributions from inside (/<) the position of the observer at 
times t<' prior to the detection time t*. (Refer to Figure 1 for 
the location of l< and />.) These same two categories apply 
to the available contributions to the aft, f-, pitch angle distri- 
bution (Figure 2b). 

The first group of accessible trajectories in Figure 2a are 
those which leave the source point (1) with space time coordi- 
nates (l<, t<') and arrive at the observer's point (0)with coordi- 
nates (l*, t*) without having been pitch angle backscattered; 
i.e., dl/dt is never zero between l< and l*. We introduce a 
special symbol for this generic type of collisional depth be- 
tween source and observer, 8Slo. Note, however, that in gen- 
eral fist,, _< ASt,, for general positions labeled l, m. If we desire 

to consider contributions from all collisional depths, even 
from this restricted type of contribution from this one source 
layer, (t* - t<') must be allowed to range from 0 to infinity in 
order to compute these contributions properly. By definition 
then the probability P of transiting bSlo is given by Plo = exp 
(_aSlo)= p(o)exp (-bS•o), which defines /•o) =_ 1. 

Another example of this group are those trajectories P•o 
which are like 2 -• 1 -• 0 in Figure 2, characterized by having 
one stochastically induced turning point (dl/dt = 0) between 
source layer and observer. Collisional depths are additive (cf. 
(12)), and therefore 

AS9. 0 -- AS9.1 + AS1o • AS9.1 + {•Slo (19) 

Therefore P•.-•o = exp (-AS•.i) exp (-•S1o) -- P<• exp (-•S1o), 
which defines pl•. Clearly, AS•.o may also range from 0 to 
infinity, either because AS•.x and/or ASxo do. Similar consid- 
erations yield 

aS$o '- AS$2 '•- AS21 '•-{•S1o (20) 

with any and/or all the quantities having infinite range. 
Higher-order quantities of these types can readily be seen to be 
more turning points between the time the particle left the 
source and reached the observer. 

We shall assume for paper 1 that elastic pitch angle scatter- 
ing is more efficient than inelastic scattering in backscattering 
electrons everywhere in the heliosphere. In the present context, 
elastic scattering implies that the test electron undergoes a 
pitch angle change with no simultaneous loss of proper frame 
kinetic energy; inelastic scattering implies a loss of proper 
frame kinetic energy while the pitch angle is changing. 

The dominant fraction of momentum transfer collisions for 

test electrons is off of fully ionized ambient ions. This is an 
essentially elastic process. Test electrons scatter off of other 
background electrons both elastically and inelastically. 

With the above provisos we shall proceed on the assumption 
of exclusively elastic Coulomb backscattering. By simple geo- 
metrical considerations and the assumed stationarity of the 
Hamiltonian, we obtain (see appendix for details) 

ASm,m+•. = 2bSm, (21) 

where 6S,•, is the collisional depth between the mth reference 
point and the next turning point on the trajectory as time 
increases. 

Therefore the integrated probability p(l• that a particle 
leaves (Ira, tin) and returns to (l, = l,•, t,), along the tube of 
force of infinite length, after only one turning point is 

p/l/ =fo•ø Iprøbability øf survival 1 AS -- 0--• AS -- (•S1, J 

'Iprøbability of reflectionl at AS = •JS1, ..] 

.I probability of survival I d(bS1,) 
= o exp (-6S1,)'[1 - exp (-6S1,)] 

ß exp (-bS,,.) d((5S1,) (22) 

Using (21), we obtain 

P(• = d(6S1,) exp (--26S1,)[1 -- exp (--6S1,)] = (23) 
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space time trajectories with access to the same (1', t*) position but with v = -v-*. Note that script els of the figure have 
been typeset in the text as lower case italic els. 
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We have assumed in deriving (23) that there is sufficient 
collisional depth (AS) outside the observer (for all energies • 1 
keV) that the range of integration to obtain pr•) is practically 
infinite. We can show that by 10-20 AU in the ecliptic that this 
is a reasonable assumption. At higher energies the finite size of 
the heliosphere will make the collision depth outside the ob- 
server to the heliopause a finite number which is a decreasing 
function with energy. This in turn implies that/•) becomes a 
decreasing function with increasing energy. 

Similarly, the integrated probability pr•-)that a particle 
leaves and returns to the same level after two turning points is 

pc:) = pr•). pr•) = (•): (24) 

since the cumulative survival is a joint probability. By induc- 
tion, the probability of surviving n turning point trajectories 
between a source position l' and the same source position at a 
later time is 

= (25) 

Thus the contributions to exp (--AS)fn(AS) on the right- 
hand side of (15) from an 'emission' layer at l<' for all times t 
prior to t*, which is at collisional depth bS to the observer, are 

exp(--AS)f•(AS)=f•(•S[l<'l).exp (-•S). 1,,•--0 pr,•)} 
+ Q(l>', l*) = •f•(•S[l<']). exp (-bS) + Q(l>', l*) (26) 

where Q(l>', l*) are the contributions from collisional distribu- 
tions at l>' larger than l*. In deriving (26) we have made use of 
the fact that the forces considered were conservative, that f• is 
isotropic, and that it does not depend explicitly on time. 

In Figure 2a we also show some of the leading contributions 
(4 -• 0), (5 -• 4 --, 0) to the additional term Q in (26) which are 
those contributions to the observed f from the same collisional 
depth AS but source regions beyond that of the observer. In 
order for these source regions to have access to the same phase 
space element dr*dr* about (r*, v*) as the contributions ex- 
plicitly given in (26), at least one turning point en route from a 
collisional distribution to the observer is required. Thus the 
probability sum for this additional term is exactly that already 
used minus the first, or direct ascent (descent), term (pro) _ 1); 
therefore the complete expression for (26) for all contributions 
from arc lengths l<, l> such that exp (-bS) is the no-scattering 
probability to survive from l< --, l, or l> --, l,, for particles with 
a specific positive dl/dt = vH, and energy E at (l*, t*) is 

exp (--AS)f•(AS)[ + = exp (-bS) 

ß t•f•(l<[bS]) + ff•(/>[bS])} (27) 

For particles at l* moving toward the sun (i.e., negative 
cosines of their pitch angle) (Figure 2b), direct access to the 
phase space element (r*, v*) is not possible from inside; rather, 
only from outside; reversing the weighting of (27), we obtain 

exp (- AS) f•(AS)] - 

= exp (-bS)I•fn(I<[AS]) + •fn(l>[bS])} (28) 

When (27) and (28) are normalized by the condition 

lim exp (--AS)fn(AS)[ -+ = fn(AS = 0) (29) 
AS-•O 

(27) and (28) become 

exp (-as)f(as)l + 

= exp (-bS){•fn(I<[bS]) + •tfn(l>[bS])} (30) 
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Fig. 3. Schematic of fore (f+) and aft (f-) electron distribution 
functions under different assumptions of the dominant manner in 
which suprathermals are backscattered. A Maxwellian in this format is 
a straight line. (a) Exclusively elastic: in this limit f+/f- -• • for E > 
7kTc and -dE/d In f+ = -dE/d In f- in extrathermal regime. (b) 
Elastic dominant plus inelastic: (-dE/d In f+) > -(dE/d In f-) for 
extrathermals; (-dE/d In f-)extra > (-dE/d In f)th .... I. (c) Inelastic 
exclusive: (-dE/d In f+ ) > (-dE/d In f-)•xtra, but (-dE/d In f)•xtra 
< (-dE/d In f)th .... ]; (-dE/d In f-)extra •ksT(R*), where R* is the 
distant radial position where extrathermals have lost so much kinetic 
energy as to become a member of the local Maxwellian with T(R*). 

and 

exp (-AS)f•(AS)[- 

= exp (-bS){Itf•(l<[bS]) + •f•(l>[bS])} (31) 

Equation (15) then becomes explicitly 

f+{t[l*(r)]} = {(-•-)f•[to(r•.)]+ (+)f•[to(ru)]}exp(-So) 
+ exp (-•S[t'(r')]) r[t'(l'(r'))] dl' dr "dr' ß •rL(t o) 

(+) fr,l.(t,, f•[t'(l'(r'))]] + exp (-bS[t'(r')]) r[t'(l'(r'))] ß 'ru(t o) 

dr' dl' 

ß dl' ' dr' ' dr' (32a) 

1 

+ exp(-bS[t'(r')]) r[t'(l'(r'))] dl'dr' ß • rL(to) 

f•[t'(l'(r'))] + exp (-•S[t'(?)]) ;[tw•(-• • ß , ru(to) 

dr' 

dt' dl' 
dr' 

dl' dr' (32b) 
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where rL, rv are given below in (35d), (35e). 
From the Parker topology of the interplanetary field defined 

by bulk speed U, solar rotation rate ft, at location r' and 
ecliptic colatitude 0', we have 

dl' [(r'• sin 0')•' + U•] •/•' 
dr' - U (33) 

We note that r(l*) _< r.(to), that 

dl' dt' 
=+ 

in the first integral of (32a) and (32b), that 

t t 

in the second integral of (32a) and (32b), and that 

t 

37? = I v,,(?)l 0 
By conservation of energy and magnetic moment we have 

•-rnevll )= •rnevtl•(r) + •-rnv•(r) 1 - 

- [e4•(r)- e4•(r')] (34) 

where ½(r) is the interplanetary electrostatic potential and 
rnev• and rnev• are the particle's components of momentum 
along and transverse to B. The gravitational terms in the 
conservation of energy have been neglected. 

Thus (32a), (32b) may be computed as integrals over ordi- 
nary space to be 

f+{t[l*(r)]}= {(-6•-)f•[to(rL)]+ (-•)f•[to(rv)]iexp(-So) 
6 exp (-bS) r[t'(r')] '•- y rL(to) 

[(r' • sin 0')•' + $2] 1/•' d? 
U 

(l)/•(•o, fn[t'(r')] + •- ,,•it,(to)lexp (-bS) r[t'(r')] 
[(r'• sin 0') •' + $2] 1/O' &' 

o 

U vii [t'(r')] 

6 f-{t[l*(r)]}= t(•)fn[to(rg)]+ (•)fn[to(rt•)]}exp(-So) 

[(r' • sin 0')•' + $2] 1/O' d? 
U vll[t'(r')] 

Or[l*(to)l 

fn[t'(r')] 
r[t'(r')] 

(r' f• sin 0')•' + $2] 1/O' d? 
U 

(35a) 

(35b) 

The most prominent advantage of (35a) and (35b) is that all 
explicit references to turning point orbits are absorbed into the 
coefficients of 1/7 and 6/7. The remaining quadratures are for 
unscattered orbits between collisional depth bS and the ob- 

server. It is this circumstance which allows the use of collision- 

less guiding center relationships, (34), to determine the spatial 
matchups of a particle with collisional depth bS between (r*, 
v*) and (r', v'). 

The limits of integration in (32a), (32b) and (35a), (35b) are 
determined in the following way. The phase space map for an 
unscattered particle between 'sources' r>, r< and observer is 
given by (1) the pitch angle map, 

cos [0(r><<)] = :F[I - •*B(•)/mv•'(•)]•/•' (35c) 

and (2) energy conservation, 

•mev•'(•) + Z_eck(•) = •mev•'(r *) + Z_eck(r*) 

where t•* = mv•'(r,)/B(r,), Z_ = - 1, and r$ refer to source 
regions outside (r>) or inside (r<) that of the observer. 

Since cos 0 must be real, the pitch angle map places spatial 
bounds on the integrals considered: 

0 <_ rnva(r•) _<#* 
) 

thus implicitly defining rv, rg 

rnva(rv g ) 

B(ru.L) 
If IB(r)l and ½ are monotonic functions, there are only two 
roots. Energy conservation also places a constraint on the 
radial domain of integration: 

0 < •mv•'(r•<) = •mv•'(r *) + Z_eqb(r*) - Z_eqb(r><) 
In practice this last constraint only impacts rv because the 
particle is giving up kinetic energy as r increases. 

For the special case of t•* = 0 the radial limits of integration 
are determined implicitly by 

•mv•'(rv) = •mv•'(r *) + Z_eq•(r*) - Z_eq•(rv) (35d) 

and r• is the smallest radius for which f•(rL) has sufficient 
population at kinetic energy 

•mv•'(r•) = •mv•'(r *) + Z_[eq•(r*)] - Z_[e•(r•)] (35e) 

to be detected in comparison with the local distribution. For 
all the 'realizations' which we discuss, t•* = 0 and r• = 1.03 Rs. 

The elastic scattering approximation used to obtain (35a) 
and (35b) is most accurate for extrathermal electrons and will 
be relaxed in paper 4. The principal impact of this approxima- 
tion is to limit the precision of the predictions of the sunwarit 
propagating extrathermal phase density in the transthermal 
and extrathermal regime. The predictions of the current for- 
mulation for the outward propagating extrathermal popu- 
lation are essentially independent of this assumption. 

If only elastic scattering is considered, then, as shown sche- 
matically in Figure 3a, 

f-(•mwll •') 1 
lim f+(•rnwll•.) = •- 

independent of energy in the extreme extrathermal regime. The 
superscripts on f denote cuts of distribution function along 
(plus) and, opposed (minus) to the outward ray along the 
tubes of force. In support of our theoretical arguments that 
elastic collisions should be more important than inelastic in 
determining f-Omw•), we discuss an experimental determi- 
nation of r-/f+ as a function of energy in Figure 4. Here we 
have plotted the ratio, 

R = 
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Fig. 4. The ratio of fore to aft phase density (f+/f-) as a function 
of proper frame velocity parallel to B, as adapted from published data 
(open circles, Feldman et al. [1975]); solid dots from illustrative theory 
(this paper, Figure 8). Horizontal line gives theoretical asymptote of } 
which prevails for the excusively elastic case of Figure 3a. 

versus parallel proper frame speed I w,,I for a published ex- 
ample of Imp 8 data (open circles). We have indicated the 
theoretical asymptote of • which follows from ignoring in- 
elastic collisions. The experimental data for this published ex- 
ample do asymptote in the vicinity of the theoretical value of•. 
(The solid circles show the trends of a 'realization' discussed in 
section 6.) 

If inelastic Coulomb scattering assists extrathermal back- 
scattering via the speed dependence of the cross section, then 

f-(}mwLø-) f+(}mwLø-) 2W•',e • Wa < Wu f-(}mwv') > f+(}mwv') 
where the subscripts refer to lower and upper proper frame 
speeds in the sense of the above inequality. Acceptable w• and 
wv are indicated in Figure 3. This relation implies that the 
differential slope of the extrathermal population going toward 
the sun will determine a cooler differential temperature than 
that going away (Figures 3b and 3c) if Coulomb collisional 
losses are a substantial factor in the extrathermal backscatter- 

ing history. In the extreme limit of completely inelastic back- 
scattering the extrathermal temperature of f- may even be 
cooler than that of the local thermal population (Figure 3c). 

The exclusive elastic case of Figure 3a is the most conducive 
to fitting the halo subpopulation with a drifting bi-Max- 
wellian, where by construction 

, 

dE dE 

d In f+ d In f- 

(extrathermal regime), as is implicit in the modeling done by 
Feldrnan et al. [1975] for a wide variety of data. Nevertheless, 
the average normalized X: for these parameterizations is rather 
high, indicating a probable admixture of some inelastic back- 
scattering (Figure 3b). In this latter circumstance the least 
squares model of a drifting bi-Maxwellian is no longer suf- 

ficiently flexible to accommodate this spectral shape. If a bi- 
Maxwellian is forced to fit data as schematized in Figure 3b, it 
will result in a larger normalized X: than data as schematized 
in Figure 3a. 

5. IMPLEMENTATION 

In order to carry out the integrals indicated in (35a) and 
(35b) we need to specify the profiles of the electron and proton 
temperatures, their density, and the gravitational, electric, and 
magnetic fields. The first three requirements define the Krook 
approximation to the collision operator through (7) by deter- 
mining f?)(r) and r[f?)(r)]; the last three profiles define the 
force field F of the Boltzmann evolution operator (1). 

In Figure 5 we show a density profile, developed by Sitder 
and Olbert [1977] and Sitder [1978] from composite experi- 
mental sources, which we will adopt to be the density for fn(o). 
In Figure 6 we show the empirical estimates of the radial 
variations of Ttherma] e'e•trø'•. Near the sun we have used the 
measurements and arguments of Bame et al. [ 1974], who sug- 
gest that Te oc r-•/7 near the base of the corona. We have used 
the results of Ogilvie and Scudder [1978] using data between 
0.45 and 0.85 AU that Te, thermal, varies like r -ø-8 and the 
results of K. I. G ringauz and M. I. V erigin (unpublished 
manuscript, 1975) for 1 < r < 1.5 AU and an asymptotic 
adiabatic behavior at large distances (> 10 AU). We have 
constrained the electron profile to agree with 1.5 X 105 øK at 1 
AU and to be 1.0 X 10 • øK near 1 Rs, consistent with coronal 
hole temperature estimates given by Maxson and Vaiana 
[1977]. 

To evaluate the Coulomb logarithm and assess overall ener- 
getics, a proton thermal profile is also required. We assume 
Te(r) = To(r) for all radii inside that radial distance r = R 
beyond which adiabatic cooling determines the average (To(1 
AU)) • 7 X 104 øK. R is usually 60-90 Rs, consistent, for 
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Fig. 5. Radial density profile after Sittier and Olbert [1977] and 
Sittier [ 1978]. 
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Fig. 6. Radial thermal electron and proton temperature profile. Con- 
structed as described in text based on empirical constraints. 

example, with the two fluid results of Acura and Whang [ 1976]. 
The solutions and the energetics are relatively insensitive to the 
large r radial dependence of Tp because the thermal forces on 
the flow are so small. 

We have used the generalized Ohm's Law (cf., e.g., Rossi 
and Olbert [ 1970], p. 350, equation (12.26)) to self-consistently 
estimate the time average parallel electric field in the proper 
frame of the plasma, E•*: 

(E,.* )r -- (E' (•)))r = (-V. Pe .(•))) + (E[[')r (36) e//e T 

where the additional effective electric field E,,' is given by 

, me (•e O. dj* 0* (E],)• = • • x B) + • + ß •)U + j*(•. U) 

+ (U.•)j* + • • - - • collisions ' (fi T 
where rt is the fractional net charge density, the angular brack- 
ets denote a spatial average, and the parentheses ( )r denote 
a temporal average over a multiple of fluctuating cycles. 

The last term in (36) is nonzero when there are currents in 
the proper frame, waves propagating in the system, or devia- 
tions from charge neutrality. In most circumstances the Hall 
effect term (the first one in E•') is the most important. It can be 
shown that A lfv6nic fluctuations, for example, give a nonzero 
contribution to (E•]')r. Generically, (E•')r represents the con- 
sequences of uncompensated forces in the proper frame of the 
plasma which have a nonvanishing time-averaged component 
along (fi). 

Given the current state of our understanding of waves and 
their time-averaged current systems j* in the solar cavity, it is 
difficult to estimate E•.'(r)with precision. Nevertheless, the 
order of magnitude of the potential energy barrier which this 
additional electric field produces is of the order of the wave 
work necessary to have an energetically self-consistent solar 
wind expansion: 

_ 1 
work]wave- -•-(me + mp)U•"+ GMs(me + mp)/1.03 Rs 

+ •" pe + •'. P• ,.oar 8 n(r') ß dr' (37) 
To be effective in accelerating the solar wind to the observed 
speeds, this wave work is expected to be done within the sub/ 
trans Alfv•nic region of the solar wind expansion [Belcher, 
1971]. We introduce a scale, Lwave, over which this work is 
principally done and phenomenologically have incorporated 
the potential barrier due to E•l'(r) as 

Z_e[rk(R ) - rk( 1.03 Rs)] 

iR ( ) = eE*.ds = A tanh r - 1.03 Rs (38) 
1.0$R s Lwave 

where ,4 -.. work[wa,,e from energy conservation consid- 
erations. This portion of the total electrostatic barrier for 
electrons achieves 76% of its asymptotic value at r76% = 3Lw•ve 
+ 1.03 Rs. Our assumption of the form of the additional 
electrostatic barrier (38) corresponds to an effective electric 
field which is strongest near the base of the corona and goes to 
zero as e -z:, Z = (r - 1.03 Rs)/Lwave. 

W e have therefore used an electrostatic parallel electric field 
of the form 

E•.*=-(•'P•)'(•) + A (r-1.03Rs) (39) ene eL wave sech 2 L wave 
for a positive magnetic sector. 

When solutions are reported below, Lwave will be a parame- 
ter, but usually of the order of 5 Rs. With these considerations 
the interplanetary potential is energetically self-consistent with 
the asymptotic wind speed used to define the topology of the 
magnetic lines of force. 

In Figure 7 we show the interplanetary potential which 
results from integrating E•* along a typical field line with 
Parker topology when the above empirical profiles of n,(r), 
Te(r), and E•'(r) are used. The asymptotic flow speed was 
assumed for this example to be 400 km/s, and Lw,,, was 5 Rs. 
Shown for comparison is an interplanetary potential profile 
reported by Lernaire and Scherer [1973] using an cxosphcric 
solar wind model. 

This electrical potential represents a significant barrier for 
the escape of electrons from the proximity of the lower corona; 
at the same time it is an acceleration for the positive ions. An 
electric field of this type is implicit in fluid solar wind models 
which externally impose the local condition that the bulk 
speeds and densities of the electrons and ions be equal (cf., 
e.g., Hartle and Sturrock [ 1968]). This type electric field is also 
implicit (through the assumption j* = 0) in the Spitzer and 
H//rm [1953] collision-dominated coefficient of thermal con- 
duction which is often used in solar wind models. The electric 

field used in this reference is predicated on local thermody- 
namic equilibrium (LTE), which is not justified in the solar 
wind. 
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Fig. 7. Self-consistent change in potential energy for an electron 
where the zero of potential has been shifted to the base of the corona. 
An electron gives up kinetic energy which is stored as this potential 
change in leaving the lower corona. 
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Fig. 8. Theoretical profile of f(x)(VH*, R* • 1.1 AU) for U= = 

400km (solid circles); fk(ø•(/xS = 0) used in solution (solid curve); see 
text for details. 

6. RESULTS 

The results of two realizations of the formal solution (15) 
will now be discussed in some detail. The two realizations 

differ by the asymptotic flow speed attained by the solar wind 
but refer to the same spatial location of 1.1 AU. 

General Features of Solutions 

The solid circles in Figure 8 show a cut of the electron 
distribution function along the local magnetic field line at time 
t and position r = 1.1 AU, as a result of the numerical 
integration of (15)-(35b) considering only Coulomb collisions. 
The asymptotic wind speed was 400 km/s, and L•,ave was taken 
to be 5 Rs. The solid curve is the local assumed form offk(ø•(AS 
= 0, Vi•), which is given for reference. Comparing the com- 
puted distribution (solid circles) with the solid curve and refer- 
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Fig. 9. Observed f(oll, r • 1 AU) adapted (unfolded) from Feldman 

et al. [1975], Figure 1. 

ring to (16) or (17), we see that the differences between the two 
curves are due to the integrated contributions originating away 
from the observer. 

In Figure 9 are shown fore and aft cuts along the local 
magnetic field of fe near 1 AU reported by Feldman et al. 
[ 1975]. The data of their Figure 14 have been transformed into 
the proper frame using the bulk velocity given in Figure 3 of 
that paper, which was 520 km/s. Although we have not tried 
to fit the observed profiles by adjusting various parameters, we 
find there is a remarkable similarity between the theoretical 
profile Figure 8 and the data Figure 9. We draw particular 
attention to the correspondences in (1) size, (2) shapes, and (3) 
skewness between the theoretical and experimental profiles. Of 
course, this is not a complete comparison which would require 
a theoretical determination of the entire pitch angle distribu- 
tion. 

It is instructive to characterize the location where the ther- 

mal and extrathermal populations at I AU were last members 
of the thermal collisional population. In order to do this we 
recast the integrals of (35a) and (35b) as 

where zXf(Kt, R) is the integral over the integrarids of (35a), 
(35b) but with limits of/•/ 4- zXRt such that 

/•t'+ ARt = /•t+,' - ARt+, (41) 

In Figure 10 we have indicated the spatial location of the 
collisional distributions which dominate the populations of 
two energy extremes of the theoretical profile given in Figure 
8. The value of the theoretical profile at the given energy in 
Figure 8 is the corresponding area under the indicated curves 
in Figure 10. 

Figure 10 clearly restates the local character of the thermal 
population. The dominant contributions for particles of 5-eV 
kinetic energy near earth come from within 4-0.2 AU (less than 
the thermal mean free path) of the observer. The forward pitch 
angle population at $ eV (0 = 0) comes predominantly from 
collisional populations sunward of the observer; for 0 = 180 ø 
at $ eV the converse is true, as shown in the shaded contribu- 
tion. 

In the extrathermal regime (as an extreme example, kinetic 
energy 500 eV) we see that both forward (0 = 0) and aft (0 = 
180 ø) populations were last members of a collisional distribu- 
tion deep in the base of the corona (<3 Rs) and certainly near 
the site of the initial expansion of the solar wind. This is the 
same area where theoretical extrapolation of Mariner 10 radial 
variations of To(r) and Tn(r) predicted a single Maxwellian 
distribution. The particles observed at 500 eV propagating 
toward the sun at 1 A U (0 = 180 ø ) are the backscattered 
fraction of the outward propagating $00-eV particles which 
passed the radial distance of the observer at some earlier time 
prior to their detection. The contributions to Af+ and Af- (500 
eV) are essentially in the ratio of 6: 1. 
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8. The low-energy (5 eV) thermal population were last members of a collisional distribution very near the observer. The 
high-energy (500 eV at I AU) extrathermals (halo) 0 = 0 and 0 = 180 ø were last members of a collisional distribution deep 
in the corona. The 0 = 180 ø halo particles are scattered backward toward the observer at R' -'• 2-10 AU, which is outside 
the observer's position of --•1.1 AU. 

The particles with kinetic energies intermediate between 
these two extremes have collisional antecedents which vary 
continuously between the two extremes depicted in Figure 10. 
For some intermediate locally transthermal energies there are 
two domains of equal importance (i.e., Af(R', R) is two 
humped). For locally subthermal energies (E < kTc) the 
smaller contribution is at the sun. As the local energy becomes 
increasingly extrathermal, the dominant collisional antecedent 
of the observed fe -+ recedes to lower and lower levels in the 
corona. 

The reason for these distributed contributions to the locally 
observed fe is intimately related to the spatial variation of the 
interplanetary potential and the variation with energy of the 
Coulomb collisional depth of the observer from the sun. 

An observed electron of kinetic energy •rno2(R) is energeti- 
cally accessible from a level R' provided the kinetic energy at 
R' is 

•m•v•'(R ') = •mv•'(R) + Z_e[ck(R) - ck(R')] (42) 

These accessible orbits make an observable contribution to the 

electron distribution function at R provided that a sufficient 
fraction can survive collisional extinction en route from R' --, 

R, as compared with the local collisional M axwellian: 

fn[R', •m•v'(R')] 

ß exp {-•S[R', R, }rn•vO'(R)]} • fn[R, }rnvO'(R)] (43) 

From Figure 7 we see that Z_[eck(R) - eck(R')] is positive 
(negative) for R' < R (R' > R ). Thus the electrons detected 
near earth have given up nearly 1 keV of kinetic energy en 
route from the corona to the observer. Electrons with energy 
of 500 eV at 1 A U had a kinetic energy of • 1.5 keV in the 
coronal M axwellian population of characteristic energy of • 
100 eV, 15 standard deviations off of the maximum phase 
density at R' • 1-2 Rs. Because the relative density of the 
lower corona becomes large so rapidly and because •S(R', R, 
500 eV) is so small, Af(R', R) can give a measurable phase 
density signal to the observer near 1 A U. 
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On the other hand, because the Coulomb collisional ex- 
tinction 5S depends so strongly on the kinetic energy of the 
particle (cf. (13) and (17)), it is very difficult to get nonlocal 
contributions to f observed for subthermal energies (E < 
kTc(R)). Although condition (42) is readily met at a reason- 
able range of nonlocal R's, the survival probabilities are so 
small (SS(R', R) for kinetic E < kaT are so large) that only 
those collisional distributions within the vicinity can survive to 
the observer. (Mathematically, iiS(R', R) -• 0 for any E pro- 
vided R'(t') -• R(t) is small enough: cf. (12).) 

We thus see that the population of the forward extra- 
thermals should in steady state be a very sensitive indicator of 
the interplanetary potential barrier between the base of the 
corona and the observer. The best local indicator of a large 
potential barrier to the corona for electrons is a higher solar 
wind speed, other things being equal such as the (V. Pe)/n(r) 
contribution to the potential drop. 

The above conclusion implies an anticorrelation between 
local plasma bulk speed (if it is nearly the asymptotic bulk 
speed) and the local fractional extrathermal (nha]o/n) phase 
density. From our discussion of Figure 10 we should not 
interpret this as a local cause and effect relationship; rather, 
the cause of both local effects is in the strong acceleration 
region removed by 1 AU from the observer. This global sense 
of causality in the inner heliosphere must prompt reexam- 
ination of the use of transport coefficients and equations of 
state which by definition relate local forces to local responses. 
We return to these matters in detail in paper 3. 

In Figure 11 we show in the same format as in Figure 8 a 
solution for U• = 800 km/s with Lwave still equal to 5 Rs and 
all other parameters that are independently specifiable the 
same. As was explained previously, the net wave work is 
adjusted to give consistency to the expansion energetics and 
magnetic topology. As can be readily seen, the suprathermal 
population is depleted in a relative sense as we qualitatively 
expected. Furthermore, the estimate of the 'differential tem- 
perature' for the suprathermals is also reduced when the 
asymptotic flow speed is increased. The heat flux [qe ] depends 
on the number of carriers available, and it is known that the 
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Fig. 11. Theoretical profile of f(•) (v,*, R* -• 1.1 AU) for U•o = 800 
km/s (solid circles). Solid curve is f•(ø)(v•, AS = 0): see text. 

most important contribution to [qe[ at 1 A U occurs between 
25 eV and 130 eV [Scudder, 1970; Montgomery, 1970] centered 
on the break region. If we thus deplete this population and 
lower its most probable speed (a Tett•/•), the heat flux it carries 
must also be reduced. We thus expect on the basis of this 
model that the interplanetary heat flux density in quasi-steady- 
state flows should be anticorrelated with the local bulk speed. 
As before, this is a global cause with two local signatures: [U[ 
and [qe [. There is thus no intrinsic local thermodynamic inter- 
relationship between [qe[ and [U[; rather, there is a global 
integro-differential interrelationship between the whole expan- 
sion history of the flow tube and all pressure and density 
gradients (which determine E•) along it. 

Figure 12 shows the dominant spatial contributions to the 5- 
and 500-eV points of Figure 11. Note the changed scale of the 
left ordinate relative to Figure 10. In this higher-speed (U• - 
800 km/s) example, the deep corona is essentially inaccessible 
to the normal halo population. The sparser contributions 
come from 8-20 Rs, with somewhat cooler collisional popu- 
lations which are sufficiently populated at the correct shifted 
energies to have energetic access and phase density excess 
sufficient to overcome extinction. The contributions to the 

local population of f remain essentially immune to the change 
in the global dynamics, which in this example merely changes 
the floating potential of the vicinity of the observer by a 
constant amount. 

Thermal Domain Effects of Scattering 
, 

Returning to Figures 8 and 11 and concentrating on the 
subtransthermal portion of the distribution, we see on first 
impression that the results of the scattering have not changed 
the local distribution. However, the slight departu.res of the 
dots from solid AS - 0 profiles in Figures 8 and 11 are 
significant and reflect the fact that so long as the mean free 
path of the medium is finite, there will be corrections to the 
asymmetries of the resulting f(v). These low-energy modifica- 
tions are most nearly in response to local thermodynamic 
forces, as will be discussed in detail in paper 3, and are of the 
same sense as Chapman-Enskog theory would suggest. 

Solar Rotatton Effects 

The asymptotically wrapped Archimedian spiral of the mag- 
netic tubes of force in the plane of the ecliptic plays an impor- 
tant role in determining the nature of f- in the extrathermal 
energy regime reported in the previous solutions. The arc 
length l along B scales (cf. (33)) as ? for large r in the ecliptic 
but only linearly with r over the magnetic poles of the sun. 
Thus the cumulative number of Coulomb 'collisions' is rela- 

tively enhanced in the ecliptic versus the polar regions by this 
geometrical hindrance of the guiding centers following the 
tubes of force. This situation may have an important impact 
on the nature of the magnitude of Coulomb backscattered 
extrathermals seen over the pole of the sun. Whether this 
implies a large skewness and resulting large heat flux on polar 
tubes of force depends on the electrostatic shielding of the 
interplanetary medium from the corona. The magnitude of 
this shielding is determined by the detailed polar coronal pro- 
files of density, electron pressure, and waves. If the polariza- 
tion potentials are very strong so as to support large asymp- 
totic flows over the poles there may not be a substantial 
extrathermal population 'leaking' into interplanetary space. In 
this situation it may not be important for the value of the heat 
flux that cumulative Coulomb backscattering of extrathermals 
is weaker than it is in the ecliptic. 
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Remarks 

The solutions for f/l) are not the fully self-consistent solution 
to the Coulomb scattering problem in the solar wind. These 
solutions indicate what type of modification the finite Cou- 
lomb mean free paths produce in the local distribution func- 
tion and what forces and scales are important in the problem. 
We shall formulate and solve the more difficult fully self- 
consistent problem in paper 4 of this series. 

7. CONCLUSIONS 

We have shown that Coulomb collisions are substantial 

mediators of the interplanetary electron velocity distribution 
function. This is true for both the thermal distribution and the 

suprathermal populations. For the suprathermals the cumula- 
tive effects of Coulomb interactions take place on the scale of 
the heliosphere itself, whereas the thermal population's Cou- 
lomb interactions are numerous on the local scale (b-• AU) 
near the point of observation (1 AU). The suprathermal elec- 
tron phase density at 1 AU is populated by electrons which 
most recently were members of collisional distributions very 
deep in the corona in or near the region (1-10 Rs) of the strong 
acceleration of the solar wind. 

We have also shown that the properties of Coulomb colli- 
sions and the forces implied in the solar wind expansion, 
without benefit of wave-particle effects, can place a zone for a 
bifurcation of the electron distribution function deep in the 
corona. The site of this fractionation (1-10 Rs) is consistent 
with the result of extrapolating the radial profiles of Tc and Th 
determined from Mariner l0 data reported by Ogilvie and 
Scudder [ 1978]. 

In the steady state the present considerations lead to a 
variety of predictions which can be tested against the growing 
body of electron data becoming available. Some of the more 
obvious relations implied in the model for an observer at a 
fixed radial position are the anticorrelation of local bulk speed 
with fractional extrathermal density, extrathermal differential 
temperature estimates, and heat flux density. In addition, the 
extrathermal differential temperature should be nearly inde- 
pendent of heliocentric distance within 1 A U owing to the 
small number of Coulomb momentum transfer 'collisions' and 

thus even fewer energy exchange 'collisions' between the co- 
rona and 1 AU. 

We strongly emphasize the need to think of the transthermal 
and extrathermal electron kinetics in the solar wind on the 
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global scale because (1) the causes of insitu changes in proper- 
ties of these electrons may not always be local ones, (2) non- 
local causes may affect different local parameters (e.g., speed, 
suprathermal population) in different ways, thereby inducing 
correlations in local measurements and the converse, and (3) 
observed local correlations in electron parameters do not 
imply local causal inerrelationships. The conventional trans- 
port question for solar wind electrons must be reposed to 
reflect the global character of the transthermal and supra- 
thermal electrons which implement the various transport sig- 
natures. 

By contrast, the subthermal electrons should in this picture 
reflect local cause and effect relationships. These electrons 
should be shaped by the local thermodynamic forces. Never- 
theless, the thermals and suprathermals are Coulomb collisi- 
onally interacting locally. In steady state the thermal and 
suprathermal electrons observed at the same time were once 
members at different times of the (same) collisional equilib- 
rium at the base of the same field line. Thus in varying degrees, 
the halo more, the core less, the subthermals and supra- 
thermals retain a memory of having interacted with this same 
reservoir. We thus suggest that the nearly fixed ratio between 
Te and Textra '• Tn at 1 AU, for example, is a remnant of this 
fact. This is another example of a nonlocal factor inducing 
local correlations in observed parameters. 

By considering the global effects of Coulomb collisions, we 
have shown that the distribution function for electrons similar 

to those reported can be reproduced in overall shape, skew- 
ness, and partition of phase density with energy. In particular, 
we have no difficulty in obtaining the backscattered portion of 
the extrathermal population (the 'halo'). The extrathermal 
population is a natural consequence of the evolution of a very 
hot, dense, inhomogeneous coronal plasma on open field lines. 

To summarize, we should like to reemphasize the point 
made in the introduction: the observed 'overabundance' of 

higher-energy (suprathermal) electrons as judged by the local 
Maxwellian distribution of lower-energy (core) electrons is a 
direct consequence of the nonuniformity of the expanding 
medium of which the electrons are an intrinsic part. Expansion 
implies cooling and decrease in density as one moves along any 
open magnetic tube of force. This circumstance causes the 
Coulomb mean free path of sufficiently high-energy electrons 
to grow with distance to the point that it becomes comparable 
to or larger than the local scale length; this, in turn, renders the 
problem to be global (nonlocal) in character. The growth of 
the mean free path does not, however, imply that the effects of 
Coulomb collisions become negligible on a global scale. In 
fact, for the topology of magnetic fields at hand, the Coulomb 
collisions are never negligible, whatever the energy of the 
observed electron may be. 

The electrostatic, magnetic, and gravitation fields combined 
with the action of Coulomb processes on global scale shape a 
non-Maxwellian distribution that, at first glance, appears to be 
composed of two distinct electron populations, thermal and 
suprathermal. Unlike the customary discussion of the origin of 
suprathermals [Parker and Tidman, 1958], we do not invoke 
Fermi or betatron equivalent energization, nor have we in- 
voked shock acceleration, nor do we require leakage from 
closed coronal field lines as suggested by Feldman et al. [1975] 
to populate the extrathermal regime. 

In conclusion, we would like to stress that the above de- 
scribed set of circumstances is not peculiar tO our sun alone, 
but rather obtains in a great variety of (rotating) astrophysical 
objects. Any star (or, even perhaps some planets like Jupiter) 

that possesses an expanding ionized atmosphere with open 
magnetic field line topology should have electron distributions 
of the type observed in our solar system. 

The above discussion should not be misconstrued as to 

indicate that the interactions of positive ions with waves are 
ruled out by this analysis. In fact, they may be of primary 
importance. Provided the magnetic turbulence invoked for the 
ions is laminar on the scale of the electron gyroradius, there 
will be no contradictions to the current work, since such 
variations would appear to make only minor path length mod- 
ifications to 6S(R', R), without there being any significant 
electron-wave scattering interaction. 

We believe that our results are sufficiently encouraging to 
warrant a more detailed and self-consistent formulation of the 

Coulomb scattering problem in the solar wind, which will be 
discussed in paper 4 of this series. 

APPENDIX: DERIVATION OF (21) 

Figure A 1 depicts the arc length l versus time t history of an 
electron from an initial arc length 1.• and time t<(l.•) until it 
returns to the same arc length lm at a later time t>(l.•), having 
had one turning point (dl/dt = 0) at (1', t*(l*)) in the elapsed 
time. We define the contour C as the trajectory determined by 
the (assumed reversible) equations of motion which connects 
(1.•, t<) with (1.•, t>). We also define subcontours Cx from (1.•, 
t<) • (1', t*) and C: from (1', t*) • (1.•, t>). 

Clearly, 

f • dS = f dS+ f dS (AI) C1 C• 

The choice of subcontours is divided at (/*, t*) so that l(t) is a 
one-one function on each subcontour. Therefore the contour 

integral can be made into ordinary integrals using the equation 
of motion 

dl/dt' = v,(l(t', C)) (A2) 

or using the one-one nature of l(t) on C:, C:, 

dl 
= dt" (C• (A3a) 

vll(l(t", Cx) 

dl 
= dt" (C: (A3b) 

v,,(l(t"), C:) 

Equation (A 1) may be rewritten as 

ft•" dS = ASm,m+l -- 6rn,* + •*,m+l (A4a) 
t <(lm) 

t<(l m ) t '* (..o'*) t>(tm) 
•t 

Fig. A1. Schematic diagram to assist in deriving (21). Note that 
script els in the figure have been set in the text as lower case italic els. 
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where 

' c, tm r[t"l(Cx)), w(l)]v,,(l(C,)) 

= dS = w(t)]v,,(t(c,)) 
(A4b) 

Let tx be any time on contour Cx for the particle to be at arc 
length I on a trajectory with given turning point as indicated in 
Figure A 1. By the one-one nature of the contour Co. there is a 
unique time to. when the same particle following contour Co. is 
at I. If, as we have assumed, the scattering is elastic and the 
external forces conservative, we have the relationship 

o,,(l(c, )) = - ) ) (AS) 

The collision time r depends on the density n and temper- 
ature of the 'target' particles. By the time stationarity as- 
sumption n(r(/), tx) equals n(r(/), to.), a similar relation holds 
between the temperatures at the same place at different times. 
The collision time also depends only on the 'test' particle's 
proper frame speed I w I, where w = v - u, u being the bulk 
velocity of the targets. Since w •- v for electrons in the solar 
wind, then r(+ol•, l) is essentially ;'(-oil, l). Therefore 

f•m d/ •*,m+x = r(t"(l(Co.)), 

- • r(t"(l(Cx)), 

Therefore 

ASm,m+x = t•m,, + •*,m+x --• 2t•m,, 

which is (21). 
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