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Abstract. The time-independent ambipolar electric field E(r,) at Parker's solar wind 
sonic critical point r, is analytically shown to range between (0.6-2.0) Eta(r,), where 
Eta(r,) is the local Dreicer [1959, 1960] electric field. The ratio of ambipolar to Dreicer 
field strength scales as ((T,}/10 6ø K) 372 20/ln A, where (T,} is the average of electron 
and ion temperatures at the critical point. As a million degree corona is nearly certainly 
required for the wind as we observe it, E (r,) •- Eta(r,). Since the steady state solar 
wind is characterized by no parallel currents, these large electric fields require 
generalizations of Dreicer's discussion of what are the results of such large electric fields. 
This is clear since even when E = 0.43Ez• in a homogeneous plasma, the electron fluid 
drifts at the electron thermal speed with respect to the ions in the absence of collective 
instabilities. Consequences of such a large current at the critical point are not found at 1 
AU. The electric fields at the orbit of earth [Scudder, 1995b] and at the base of the fully 
ionized layer of the transition region [Scudder, 1995a] are nevertheless comparable to the 
local Dreicer electric field. From a theoretical point of view, the finding that such large 
electric fields are required in the plasma points to the need for basic modifications to the 
macroscopic description of a magnetized plasma that are outside of the Chapman-Enskog- 
Spitzer-Braginskii closure schemes that assume perturbative corrections to homogeneous 
solutions as an expansion in the small parameter • -- Eii/Ez•. It is suggested that the 
possibility to form gradients, to allow heat to flow, and to allow the bulk plasma to move 
can short circuit the homogeneous expectations of bulk runaway implicit in the Dreicer 
discussion. However, the intrinsic bifurcation of the electron distribution reflects the 
physics of the Coulomb cross section in the presence of the very strong dc field and is 
suggested as the underlying reason for the omnipresent nonthermal distributions inside 
and out of the critical point. The ambipolar electric field at the solar wind critical point 
from two-fluid theory and the electric field assumed in Spitzer-Braginskii heat transport 
are shown to disagree at almost all the possible two-fluid critical points. This same closure 
flaw also afflicts the fluid portion of any turbulence description that may be thought 
relevant for the wind. 

1. Introduction 

The description of the macroscopic (fluid) equations with 
gradients for inhomogeneous plasmas has developed in paral- 
lel with the moment descriptions of gas and magnetohydrody- 
namics [Chapman and Cowling, 1970; Braginskii, 1965; Trubni- 
kov; 1965]. The transport description for a plasma, however, 
requires additional care especially in the case of the fully ion- 
ized gases of astrophysics, so that gradients do not allow un- 
wanted space charges to develop with the attendant require- 
ments to retain higher frequencies and shorter scal•s in the 
description of the medium. In the steady state, weak gradient 
limit, parallel electric fields are chosen in these transport pro- 
cedures so as to preclude these effects, yielding hydrodynamic 
looking transport relations like Q = -•VT that permit clo- 
sure of the infinite ladder of formal moments of the kinetic 

equation. Even attempts to include strong gradients by Camp- 
bell [1984] explicitly presuppose the ancillary condition that 
these required electric fields are small compared to the Dreicer 
electric field discussed below. However, the transcription and 
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application of these closure techniques for astrophysical plas- 
mas where gravity plays an important role poses new problems 
not solved by these prior approaches. Theory for a spatially 
inhomogeneous plasma has been developed for "weak depar- 
tures" from spatial homogeneity, where in lowest order the 
quasi-neutrality electric field vanishes and is perturbatively ad- 
justed to enforce electrodynamic attributes such as no parallel 
currents. In this way, initial quasi-neutrality is preserved in the 
presence of gradients by choosing Ell so that Jll - 0 ensuring 
that charge density does not grow. 

In this way approximate, local, partial differential equations 
have been formulated with these closure coefficients whose 

solutions are attempts at the macroscopic moment description 
of the physical system within the very fragile assumptions that 
allowed the system of partial differential equation (PDEs) to 
be ascertained (cf. Scudder [1992a] for a discussion of these). 
This type of truncated moment equations are the starting point 
for various inferences that the observed solar wind "needs" 

mechanisms for energy deposition beyond thermal replenish- 
ment. Such conclusions have been made using Spitzer- 
Braginskii formulas or their saturated limits. The conclusions 
of these arguments are only as strong as the integrity of the 
equations used. Similar closure flaws occur in all "tests" to date 

13,461 



13,462 SCUDDER: DREICER ORDER ELECTRIC FIELDS AT SOLAR WIND SONIC POINT 

of the adequacy off turbulence mediated winds. In this paper 
the fluid's side of these equations are shown to have serious 
flaws that invalidate the closure schemes upon which they are 
built. The earlier arguments about the insufficiency of the 
random energy support for the solar wind expansion must be 
reopened, and the necessity for turbulence is no longer obvi- 
ous. 

The usual fluid moment equations are derived ignoring the 
well known bias that gravity can introduce to the microscopic 
description of the kinetic physics. Gravity by itself requires a 
parallel electric field to enforce quasi-neutrality that need not 
be the same electric field presupposed in the Spitzer-Braginskii 
transport formulation. Welding Braginskii-Spitzer transport 
formulae into macroscopic equations for inhomogeneous equi- 
libria does not assure the plasma described is quasi-neutral. 

A particularly well known example for this electric field is 
the gravitationally bound isothermal plasma atmosphere. In 
order that electrons and ions be distributed inhomogeneously 
in the gravitational field with the same scale height and pres- 
sure profile and be quasi-neutral, a radial electric field of 
approximately half the strength of the gravitational field is 
required [Pannekoek, 1922; Rosseland, 1924] to compensate for 
the radically different gravitational attractions of electrons and 
ions. (For a neutral atmosphere, species of different mass 
could have different scale heights with impunity.) When an ion 
atmosphere's dynamics is to be modeled with sources and sinks 
for internal energy, the weak gradient moment PDEs, together 
with the body gravitational force are used to relate density, 
momentum, and energy. These equations have the "impedance 
mismatch" that the transport microphysical recipes (e.g., Q = 
-KV T) contain a choice for Ell that counteracts the tendency 
for gradients to spawn current growth without any consider- 
ation for the overarching need for the macroscopic plasma's 
need for quasi-neutrality. 

It is often, but incorrectly, assumed that gravitationally struc- 
tured plasmas can be completely addressed by adding a body 
force to the weak gradient moment equations and using a 
common continuity equation together with the weak gradient 
closure recipes. The structure of the conservation equations is 
exact if no terms are omitted. The approximation involves how 
pressure and heat flux are related to lower-order moments; 
examples are polytropes or heat conduction "laws" that allow 
the system of moment equations to be mathematically closed, 
yet with two separate Ell values: (1) the exact one by the 
difference of the two momentum equations in terms of other 
moments and (2) the approximate thermoelectric field based 
on a gradient expansion involved in the Spitzer formulation of 
the heat law with no currents [cf. Shkarofsky et al., 1963] 

Ei•p itzer k T" •} . V ln ( (k Te) "7ø3 ) = e ne ' (1) 
where (f•ce/vci >> 1) has been assumed. In the limit of the 
isothermal, exponential atmosphere, this expression simplifies 
to 

El•pitzer _ - kYeo fl. V(ln n). (2) e 

For the isothermal exponential atmosphere 

(GM©(M+m)(r-ro)) ne = no exp - 2kTeorro ' 
For this special example the results of (1) and (2) above give 
the same, consistent electric field: 

i ^ 
Eiso = - b- V[tI)o(r)/2]. (3) 

e 

However, if isothermal conditions cannot be met, there are 
still stellar atmospheres which are not isothermal with E given 
by (3) [cf. Scudder, 1992a] which disagree with (1). In this 
circumstance the transport and quasi-neutrality are inconsis- 
tently addressed. For example, under velocity filtration [Scud- 
der, 1992a, b], 

where 

T(r) = ToG(•e•). (4) 

2 

G(qle•) = [ l + ( 2K _ 3)ql•(r)kTol. (5) 
The density varies like 

n(r) = noG[•(r)] (-K+•/2). (6) 

In this regime the Spitzer-Braginskii gradient expansion recipe 
assigns Ell to be determined by 

1 2• + 2.406 
EK = - G'/2+•fi ß V(dPo(r)/2) (7) e 2•-3 ' 

Only in the Maxwellian limit when G --> 1, • --> o• are (3) and 
(7) equal. 

Only through the conservation equations can E be deter- 
mined exactly and even then only when the pressure gradients 
and thermal force expressions are known to have an indepen- 
dent precision. The apparent freedom for choice of closure is 
illusory, since almost all choices will be inconsistent with the 
requirements for quasi-neutrality. Whether the choice is poly- 
trope, incompressible flow or heat law, it is almost certainly 
inconsistent with the electric field necessary for quasi- 
neutrality. 

2. Present Work 

In this paper, conservation equations are used to analytically 
calculate the size of the ambipolar electric field necessary to 
maintain quasi-neutrality at Parker's sonic critical point of the 
solar wind expansion. This ambipolar electric field is shown to 
be of order unity in units of the Dreicer [1959, 1960] electric 
field Ea, which is the appropriate yardstick for a large parallel 
electric field. The Dreicer electric field is defined to be of a 

3 

magnitude so that an electron of kinetic energy • kT½ gains k T• 
in one mean free path in this electric field, namely, 

eEoA = kT,,. (8) 

In a homogeneous Maxwellian plasma, an electric field with 
E = Em•. = 0.4 3Eo causes a current to flow with a drift speed 
relative to the ions equal to the electron thermal speed [Dre- 
icer, 1960]. For any higher field strength in this model, no 
steady state is possible between friction and the applied emf. 
When E < E mf , a steady state current flows and a nonlinear 
Ohmic relationship obtains 

j = tr(E) E E < Eo. (9) 

Ordinarily steady dc electric fields comparable to the Dre- 
icer field have not been considered theoretically, since the 
Dreicer induced drifts in a homogeneous medium are unstable 
to microinstabilities which are widely thought to be quenched 
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by a relaxation into a nearby state without such large electric 
fields. The runaway problem for finite but still small electric 
field regime 0 < e < 0.05 has been addressed in the literature 
[e.g., Dreicer, 1959, 1960; Kruskal and Bernstein, 1964; Fuchs et 
al., 1986; Moghaddam-Taaheri and Vlahos, 1987; Holman, 
1985, 1995] for spatially homogeneous plasmas. In all cases, 
transient behavior was the focus; steady states were not con- 
sidered. 

The demonstration contained in this paper of the steady 
state size of the parallel dc electric fields requires a global 
discussion of the kinetic behavior of the plasma, a situation 
that is the antithesis of the weak gradient fluid PDEs for the 
moments of the distribution function. It is suggested that this, 
until now, unrecognized situation underlies the enormous dif- 
ficulties in quantitative energy budgets that plague the solar 
wind expansion in particular and astrophysics more generally. 

3. Size of E I at Parker's Critical Point 
Recently, it has been analytically demonstrated [Scudder, 

1996] (hereinafter referred to as Paper I) that Parker's neces- 
sary and sufficient conditions for the formation of a saddle 
x-type critical point in a spherically symmetric solar wind are 
corollaries of requiring that the ion's equivalent potential (the 
sum of the ion's gravitational and electrical potential), •+, be 
a local maximum at the critical point r,. From this condition it 
follows that Parker's sonic critical point is the location where 
there is a balance of forces on an ion between the electric and 

gravitational fields. This implies that 

GMsM 

eE(r, ) - r* 2 . (10) 
The general location for the critical point from (paper I, equa- 
tion 37a) is given by 

GMs(M + m) 

r, = 2k(T,)[2 - (j•eAe q- j•iAi)] ' (11a) 
where A•, is the partial pressure of species k at the critical 
point: 

r•, 

A k = re,, q- Ti,, , (11b) 
and where 

A e q- A i • 1, (11c) 

with Te, and Ti, the electron and ion temperatures at the 
critical point, respectively. The average temperature at the 
critical point is (T,). The radial power law exponents of the 
electron and ion temperatures at the critical point are /3e,i. 

Equation (10) can be rewritten by using one power of r, to 
the left-hand side and (11a) for the other to obtain 

M 
, = -- k(r,)[4 - 2(]3eAe + •iAi)] (12) eE(r )r, M + m ' 

an expression independent of explicit reference to gravity. Let 
the shortest scale length for a macroscopic fluid variable M be 
given by La•, then 

dlnM I•l 
m•/1 --- d-•• = r, ' (13) 

Defining the Knudsen number for momentum transfer for 
electrons, K n, at r, by 

•-mom I •lXmom(r,) 
---- -- = , (14) Kn(r,) La4 r, 

where )[mom is the mean free path for momentum transfer of 
the RMS speed particle, (10) can be rewritten as 

m (2 -- (]3eA e q- ]3gAg) ) 
eE (r,) •-mom -- k re,g n m q- m Ael •l . (15) 

The strongest macroscopic variation for almost any fluid 
variable at the critical point is (via paper I) that of the density. 
In this approximation, using (22b) and (38b) in paper I, we 
obtain 

2- Ai• i 
Ic -lal- Ae (16) 

Ignoring m/M compared to unity and using (16) into (15) 
yields 

( eE(r,)Xmfp = kre,Kn 1 - 2 - AgOg/ ' (Icl-- -a) (•7) 
The Dreicer electric field E D is that applied emf for which 

there is no longer enough coulomb friction from the entire 
electron fluid, for there to be an equilibrium between coulomb 
drag and the emf, provided f(v) remains close to a Maxwellian 
and the system is spatially homogeneous [Dreicer, 1959, 1960]. 
The size of this electric field is given by (8). The existence of 
such a limit is usually demonstrated by showing that the fric- 
tion provided by the Coulomb interaction has a limited Stokes 
regime where resistance is proportional to the first power of 
the relative drift speed. At larger drifts this friction increases 
more slowly with drift speed than the first power, until at a drift 
speed of the thermal speed of the electrons the friction stops 
growing altogether and thereafter decreases with increasing 
drift speed. The maximum friction electric field occurs when 

Emf = 0.43E D. (18) 

When the applied emf exceeds E mf the drift speed of electron 
center of mass grows without bound in a homogeneous plasma 
with postulated drifting Maxwellian distribution function. Such 
large currents are often not replenishable, nor is there suffi- 
cient energy for this to represent a steady state. Long before 
the order one regime relative to Dreicer is achieved, large drift 
velocities, and hence, currents are implied even when a homo- 
geneous sub-Dreicer equilibrium is mathematically possible. 
The Dreicer limit was examined for laboratory machines to 
ascertain what emf's would cause the electrons to "runaway" to 
the container walls, leaving the ions behind and causing a total 
loss of confinement. These findings have often led to the ex- 
trapolation that parallel electric fields of this size in nature 
could only precipitate transient behavior, rather than be part of 
a steady state equilibrium. Apparently unconsidered was the 
possibility that large electric fields could be present, counter- 
acted by pressure gradients, but with no dc current flowing. 

Nevertheless, comparison of (17) and (8) reveals that 

E(F,) ( •__ehe • t• • ED = 2.3 1 -2- Ai13i} K,, (ll = -8) (19) 
a result that demonstrates the order unity size of e at the 
critical point. This is clear since the Knudsen number is also 
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-1 

Knudsen Number K(r,) 

-2 

0.0 0.2 0.4 0.6 0.8 1.0 

A e = Te,/(Te, -4.- T,,) 

Figure 1. Knudsen number K(Ae, •e)' Cross-hatched region is excluded portion of parameter space where 
no critical points are found. 

near unity at the critical point, a place often used as the base 
conditions for exospheric treatments of the solar wind [e.g., 
Lemaire and Scherer, 1971] (cf. Figure 1). 

The Knudsen number at the critical point can be computed 
so that E/Eo of (19) may be explicitly and self-consistently 
evaluated. With the additional knowledge of wind speed at the 
critical point in terms of the critical point temperature: 

2k(T,)• 1/2 U(r,) = m + M] (20a) 
and the observed mass flux at 1 AU of the solar wind, together 
with conservation of mass 

n(r,)U(r,)r, 2 = n,U,r, 2 =/•/l AuUI ̂ur• ̂ • = noUoro 2, (20b) 

the density at the critical point is determined as 

n oUoro 2 
n, = U,r, 2 . (20c) 

The free path for the root-mean-square speed particle is [Rossi 
and Olbert, 1970] 

8.8 x 104 øK) r•(r,, 
'•isøtrøpizatiøn(t'*) = n(r,, cc -l) In A(r,) cm. (21) 

As illustrated in Figure 1, the Knudsen number via (14) and 
(21) is thus determined across the possible critical points. As 
presupposed previously, but as now actually calculated for the 
first time, the Knudsen number at the critical point exceeds 
unity for almost all choices, ranging from 0.5 to 6.0. With this 
result the Dreicer scaled electric field at the critical point can 
be found after using Te, = 2Ae(T, ) to be 

Eo(r,) M + m 

36X1 s 2 ( ) ß 0 Zx•(r,)2U,r,,•o r, (22) ß __ o 

noUoro 2 In A r,,iso 

From (paper I, equation (2c)) 

GMs(M + m) 

r,,•so = 4k(r,) (23) 
together with (20a) yields 

aM,, -1,2 U,r,,•,o = 2 m + M] ' (24) 
This gives the dimensionless electric field of (22) in the form 

E(F,) _( M )(4-2(13,,A,,+13,A,) ) Eo(r,) M + m 

3'6x1 s 2 ( ) 0 A•,{r,}2U,r,.i,•o r, (25a) ß __ 

n oUoro 2 In A r,,i,•o 

Specializing (25a) to the conditions of our wind at 1 AU of 
no = 8/cc, and Uo = 4.0 x 10 7 cm/s (notice that noUo is 
relatively constant at 1AU, cf. Bridge [1976]), the final dimen- 
sionless electric field at the sonic critical point is obtained: 

•-o•t:}-} I •un =2'48 106øKJ ln2----•-•)(-•o/ 
ß (400 km/s• U-• ]' (25b) 
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A e = T•,/(T•, + Ti. ) 

Figure 2. E(r,)/[Eo(r,)] as a function of allowed Ae, /3 e where critical points occur for two-fluid wind. 
Cross-hatched region is excluded portion of parameter space where no critical points are found. 

Using the allowed critical points from (paper I) and assum- 
ing (T,) = 10 6 øK, Figure 2 illustrates the variation and 
numerical size of the dimensionless electric field at the possible 
critical points. Only the Coulomb logarithm's variability at the 
different critical points of this diagram causes the weak depen- 
dence of e on the electron temperature power law exponent at 
the critical point,/3 e. For equal electron and ion temperatures, 
•e : 0.5, the dimensionless electric field is essentially unity, 
and almost strictly proportional to the partial pressure fraction 
of the electrons at the critical point. 

From Figure 2 and the form of expression (25b) it is clear 
that the formation of a solar wind with the observed 1 AU mass 

flux that requires million degree temperatures at the critical 
point is synonymous with large, Dreicer order, electric fields at 
the critical point. The velocity space local runaway production 
in this locale is thus an unavoidable corollary of the steady 
state of the solar wind. 

4. E -•E•andJ -07 
In steady state 

-- = (26a) 
B, B. 

so that any thermal speed scaled relative drift at the critical 
point would translate into a relative slippage at Earth of 

/dth ( 1 AU) B (r,)n(1 AU) T(1 AU) 

AU)' X0) -- 0.8, (26b) 
where use has been made of the ratio of bulk speeds be•een 
the critical point and 1 AU is approximately 1/4. Obse•ations 

[e.g., Montgomery et al., 1968; Scudder et al., 1986] show that 
the electron drift speed in units of the thermal speed is exper- 
imentally small, consistent with being zero with a precision of 
25 parts in 1800, 

va(1 AU) 

vth(1 AU) = 0 + 02014, (27) 
contradicting th e Premise of (26b). For a steady state solar 
wind, the coherent flow of JIl from the corona on open solar 
wind field lines is inconsistent with charge neutrality of the 
Sun. Further, steady parallel currents would also reorganize 
the scale of the directional changes in the interplanetary mag- 
netic field so that the Parker spiral would not be detectable. 
Therefore the consequences of such larg e Ell values are not 
found in heretofore undetected current flows. 

5. E i• •E• andfv) a Gaussian? 
When studying the role of the .electric field on the electron 

distribution function, Dreicer [1959] and Fuchs et al. [1986] 
have shown that the size of this electric field naturally parti- 
tions the velocity space into a regime .where the characteristics 
are hyperbolic and a low-energy regime Where the behavior is 
more nearly parabolic, This separatrix occurs at a speed v* 
given by 

' 1/2 

v*:-- w , (28) 
_ 

where w r, e = iS-the root-mean-square speed of 
the distributions, For/ielectmns.above this speed the electric 
field force is underdamped; below it the electrons are over- 
damped by'collisions. 
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Percent Runaways in Maxwellian in Presence of Finite E 
100.00 . _ 

10.00 ........................................ • 

i - 
O.lO -• 

0.01 ....... ,i , , , , , ,,,I , ....... • ........ 
0.1 1.0 10.0 100.0 1000.0 

Figure 3. Fraction of Gaussian population subject to runaway as a function of the ambient electric field. In 
the extremely weak electric field regimes, the fraction susceptible to runaway becomes very small. Horizontal 
dashed lines indicate regimes of halo number fraction from long-term 1 AU averages [Feldman et al., 1975]. 

In the homogeneous E = 0 limit this speed boundary, v*, 
receeds to very large values where there are essentially no 
ambient electrons to be promoted into runaway. For a finite 
electric field strength the energy boundary above which parti- 

cles are accelerated into runaway defines a separatrix between 
thermal and suprathermal electrons at the finite kinetic energy 
given by 

E * = 3k Te(Eo/E). (29) 

Maximum Friction (T)/10øøK 

-1 

-:2 

0.0 0.2 0.4 0.6 O.B 1.0 
A• = T•,/(T•, + Ti, ) 

Figure 4. Average of electron and ion temperature, (T,(Ae, •[3e)), at the critical point such that the electric 
field at the critical point is the maximal friction electric field. Cross-hatched region is excluded portion of 
parameter space where no critical points are found. 
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Maximum Friction T /106øK 

-1 

-2 

0.0 0.2 0.4 0.6 0.8 1.0 
6•- T•,/(T•, + Ti,) 

Figure 5. Ion temperature at the critical point, Tp(Ae, •3 e ), such that the electric field at the critical point 
is the maximal friction electric field. Cross-hatched region is excluded portion of parameter space where no 
critical points are found. 

Maximum Friction T (r,)/lO6øK 

2 

-1 

-2 

0.0 0.2 0.4 0.6 0.8 1.0 
A• = T•,/(T•, + T•,) 

Figure 6. Average of electron and ion temperature, Te(Ae, •3e) , at the critical point such that the electric 
field at the critical point is the maximal friction electric field. Cross-hatched region is excluded portion of 
parameter space where no critical points are found. 
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The fraction of particles of a Gaussian affected in this way is 
approximately half of the particles outside the speed v*' 

run 

total 
(30) 

illustrated in Figure 3. In contrast to the astrophysical situa- 
tion, the postulated infintesimally small electric fields of 
Spitzer-Braginskii closure approximation ensures the fraction 
of the electron gas susceptible to runaway is vanishingly small. 
Under the maximum friction hypothesis with Emf -- 0.43Eo 
the electron distribution functions at the critical point should 
be bifurcated above, but in the vicinity of 7kTe,,. Above this 
energy about 7% of the ambient density should be found as 
illustrated in Figure 3. (It should be noted that this is the same 
regime where the suprathermal electrons are noticeably re- 
moved from a local Maxwellian at the orbit of Earth [Mont- 
gotnew et al., 1968; Feldtnan et al., 1975; Scudder and Olbert, 
1979], and, where long-term averages of this number fraction 
are found to be 7 _+ 2% [Feldman et al., 1975]). 

To appreciate the importance of this finding it should be 
noticed that the typical regimes of "runaway" examined by 
fusion codes [e.g., Fuchs et al., 1986] are regimes where E/Eo 
< 0.04, making the runaway population (0.03% by number) 
above E* > -•75kTc, a regime where they are still test par- 
ticles, where they are still insignificant carriers of energy or 
momentum in the transport. The situation suggested in this 
paper for the solar wind expansion at the critical point strongly 
suggests that nonthermal electron distributions are required as 
part of the equilibrium state. Finally this nonthermal part of 
the velocity space is now required by steady state consider- 
ations and not in the extreme cosmic ray regime of the random 
distribution as it has usually been modeled, but in the tradi- 
tional area where suprathermal electrons are routinely found 
by in situ particle detectors [Montgomery et al., 1968; Ogilvie et 
al., 1971; Feldman et al., 1975; Ogilvie and Scudder, 1978]. 

The "runaway" separatrix in velocity space in the solar wind 
electron velocity distribution at Parker's sonic point occurs in 
the transthermal portion of the velocity distribution [Scudder 
and Olbert, 1979], the boundary between thermal and suprath- 
ermal. This has the consequence of a steady state local run- 
away of a significant fraction of the gas, a situation that cannot 
be ignored or handled by a (1) local or (2) perturbative statis- 
tical description. This newly discovered parameter regime at 
the critical point is decidedly inconsistent with transport phys- 
ics predicated on perturbations to nearly Maxwell-Boltzmann 
distribution functions [cf. Scudder, 1992a]. This finding reopens 
the question of whether internal energy rearrangements can 
fuel the solar wind type expansions since the large steady state 
electric fields calculated here invalidate the premises of Bra- 
ginskii style transport used to estimate the size, the direction, 
or the sufficiency of the conduction flux as for example sum- 
marized by Holzer and Leer [1980]. 

6. Te, and T•,, If E - Emf 
Dreicer argues that there is a maximum applied electric field 

Em/. beyond which the phase space overlap of electrons and ion 
velocity distributions can no longer provide sufficient momen- 
tum transfer to balance the applied emf. In his homogeneous 
system with the proviso that electrons remain MaxwellJan 
while drifting in response to the applied emf, he ascertained 
that this "maximal friction" electric field occurred when 

Em/-• O.43Eo. (31) 

The existence of such a maximum E consistent with equilib- 
rium follows from the properties of the Coulomb cross section. 
The exact size of this threshold depends on the precise form of 
the equilibrium distribution. If the equilibrium distribution 
does not depart substantially from the Gaussian at low energy, 
the maximal friction estimate may not be too far off. This is 
qualitatively clear since it is the low-energy electrons interact- 
ing with the protons that provides almost all the friction be- 
tween the species. 

If we assume (31) sets this limit, interesting inferences for 
the limiting values of the average electron and ion tempera- 
tures and their ratios at the critical point may be determined as 
parameterized by the critical points possible in the (Ae, •e) 
space that spans all critical points. As shown in Paper I, no 
critical points are possible for an electron partial pressure ratio 
A e < A, = 0.2437. Equation (25b) may be set equal to 0.43 
and solved for (T,), parametric in the choice of A e > 0.2437. 
With this knowledge the electron and ion temperatures at the 
critical point have been illustrated in Figures 4, 5, and 6 using 
Te(r, ) = 2AeiT, } and Tp(r,)= 2(1 - Ae){T, ). The 
average temperature (T,) at the critical point illustrated in 
Figure 4 ranges from --10 4 øK in the unlikely regime, (A e -• 
1), where the ion temperature Tp,, approaches zero (cf. Fig- 
ure 5) at the critical point, to 9 x 10 s øK for the lowest 
allowable electron partial pressure Ae. In the highest average 
temperature regime the ion temperature Tp, would be in 
excess of 10 6 øm (Figure 5), near the canonical values. The 
electron temperature at the critical points surveyed vary over a 
much narrower range illustrated in Figure 6 (4.5 x l0 s - 
7.0 x l0 s øK), in anticorrelation with the ion temperature 
behavior. There is a maximum proton temperature ratio at any 
critical point of 

Tp(r,) 
T,.(r,) --< 3.10 (32) 

as implied by the minimum Ac noted above. In this (expected) 
regime the ion temperature at the critical point exceeds the 
electron temperature. 

These estimates of the electron temperature at the critical 
point may shed some light on the extrapolations made by 
Marsch et al. [1989] concerning the electron temperature gra- 
dients inside Helios' orbit. These authors inferred a marked 

change in the radial profile of electron temperature would be 
required to match the innermost Helios data with an assumed 
2 x 10 6 øK common electron and ion temperature at the 
coronal base. Since the electrons of Figure 6 are almost always 
cooler than this at the critical point, the extrapolated radial 
gradients within 0.3 AU need not be as different from their 
observed behavior outside 0.3 AU. Notice from Figure 3 that 
if T•. -• 2 X 10 60 K (as assumed by Marsch et al.) that E/Eo 
-- 2 3/2 at the critical point implying that 90.5% of the elec- 
trons at the critical point would participate in the local run- 
away. Using the electric field estimate based on maximal fric- 
tion, this local runaway density would be reduced to only 7.2% 
in local runaway, a number comparable to the number in the 
halo population at the orbit of Earth [Feldtnan et al., 1975]. 

Under the maximum friction assumption, the location of the 
critical point via (11a) can be determined in units of solar radii. 
Since the parameters that characterize the critical point are all 
within typical parameters, it is not surprising that the critical 
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Figure 7. The location of the critical point under the assumption of the maximum friction hypothesis. Levels 
are at [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 40, 50, 60] R s. Cross-hatched region is excluded portion 
of parameter space where no critical points are found. 

points should be similarly reasonable as illustrated in Figure 7. 
There is no apparent contradiction with the temperature at the 
critical points inventoried here under the assumption that the 
electric field there is at the maximal friction value of E z•. 

7. E (r,) Versus Espitze r 
Finally, it is now possible to make the comparison with 

Spitzer's transport choice of the electric field (1) and that 
found here as required by the steady state two-fluid equations 
(10). As we know, the required electron and ion temperature 
gradients and those of the density at the critical points, we may 
calculate (1) and (10) directly and exhibit their ratio indepen- 
dent of the maximum friction estimates of Figures 4-6 made in 
the previous section. It is found to be 

Espitze r 1.703A•/• + A,/•,- 2 
E(r,) A•/• + A,/•,- 2 ' 

(33) 

where use has been made of (22b) and (38b) in Paper I; this 
expression is illustrated in Figure 8. The Spitzer electric field 
even has the incorrect sign for some electron partial pressures 
when/•e > 1.7. The quasi-neutrality electric field is stronger 
than Spitzer would estimate for 0 < /•e < 1.7, and weaker in 
the traditional area of /• < 0. Figure 8 clearly shows that 
quasi-neutrality and closure approximations when imposed in- 
dependently can often contradict one another. The ultimate 
asymptotic wind speed is controlled by the net accelerating 
force supplied by the electric force to the ions, so the under- 
estimate of Spitzer E even in the case of decreasing/• < 0 
profiles has underestimated the electric fields efficiency for 
accelerating the gas. A complimentary statement is that the 

heat flow permissable in that regime has also been underesti- 
mated. 

8. Discussion 

The large electric fields required by steady state consider- 
ations of conservation equations can be reconciled with the 
transient "runaway" expectations by considering three differ- 
ences between astrophysical plasmas and the laboratory de- 
vices plagued by transient runaway loss of containment. (1) 
The parallel electric fields of astrophysics are internally forced 
by gravity and its induced gradients, while laboratory emf's are 
usually externally imposed. Independent of transport consid- 
erations, gravity requires an electric field to achieve quasi- 
neutrality. (2) The fixed, finite size of the containers of labo- 
ratory devices placed constraints on how such large electric 
fields could be accommodated: in particular, the transient elec- 
tron current to the walls, rendered the remaining nonneutral 
plasma uninteresting as it escapes confinement. In the solar 
wind, for example, the large electric field has other outlets for 
the apparent impasse precipitated by local runaway produc- 
tion: without confining boundaries the volume occupied by the 
electrons and ions could change in such a way to rearrange the 
plasma density and temperature to counteract this large elec- 
tric field. Momentum balance at the fluid level can be achieved 

for electrons not just with friction, but with opposing electron 
pressure gradients and cooperative electron and ion hydrody- 
namic bulk motion in ways not possible in homogeneous, small 
laboratory vessels. (3) There are other odd moments besides 
the respective number fluxes for the ions and electrons, such as 
heat flux, which can respond under such large emf's. Such 
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Figure 8. The ratio of the electric field implicit in the use of Spitzer-Braginski conduction formula and the 
electric field required by the conservation equations for the wind in the presence of gravity. Notice that this 
result is independent of the maximum friction estimates of Figures 4-6. Contour levels are [-0.4, -0.2, 0, 0.2, 
0.4, 0.6, 0.8, 1.0, 1.2]. Cross-hatched region is excluded portion of parameter space where no critical points are 
found. 

skewed velocity distributions were not considered by Dreicer; 
they can also enhance the frictional coupling to the ions with- 
out drawing currents. By redefining the spatial volume occu- 
pied by the plasma, an astrophysical plasma could also develop 
an equilibrium steady hydrodynamic expansion in the direction 
of the electric field. In fact, in the exospheric theory of long 
mean free path gases the electric field plays the role of an 
extracting electric force on the ions. In the case of the labora- 
tory this possibility of an orderly expansion was preempted by 
the bounding laboratory container but is clearly a force behind 
omnipresent stellar winds expanding into the relative vacuum 
of interstellar space and the cause of the nonthermal distribu- 
tions as well. 

By the persistence of the observed solar wind we are im- 
pelled by observations to seek a relatively steady state expla- 
nation for the wind and, with the results of the present paper, 
we now must do so in the presence of electric fields that are not 
perturbatively small (as is assumed in all fluid transport de- 
scriptions with fluid moment truncation) and with a suitably 
generalized discussion of thermal communication that is be- 
yond that implied by Spitzer-Braginskii formulas. 

It is proposed that the large E/E, computed here is com- 
patible with steady state distributions of plasma with (1) non- 
thermal distributions with bifurcated suprathermal popula- 
tions locally in runaway and (2) spatial inhomogeneous lowest- 
order distributions of matter with lowest-order pressure 
gradients, skews, and hydrodynamics that counteract the seem- 
ingly unavoidable but unobserved, electron bulk runaway pre- 
dicted on the basis of naive extrapolation of Dreicer's calcula- 
tions. In this way there is velocity space "runaway" without 
configuration space runaway. The price for avoiding current 
flow and a charging sun is that the non-Maxwellian distribution 
must be considered as part of the equilibrium in this plasma. 
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