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[1] The reconstruction of current sheet geometry is investigated as a function of paths
through an oblique two-dimensional (2-D) hybrid supercritical shock and two fluid
simulations of the magnetopause with no, small, and large guide fields, respectively. For
world lines near the separator or 2-D structures in shocks, systematic errors swamp
statistical ones tenfold. The systematic angular errors of the magnetopause surface normal
determined by minimum variance analysis (MVA) using >100,000 world lines are
contrasted with recommended statistical error cones. The systematic errors range as high
as 90� but typically more than 20�. Errors do not have a most probable value at the
magnetopause when using MVA on the magnetic data, MnVA(B), and remain substantial
when the Faraday residue, MnVA(FR), is minimized. The 68% confidence error on
MnVA(FR) normals is 0–15�. ‘‘Skimming’’ world lines oblique to the current sheet
normal are the most susceptible to the MnVA(B) and MnVA(FR) systematic errors
discussed here, whether or not the world line pierces the separator. MnVA(B) almost
always erroneously insists that a guide field is present when none is present in the
simulation. MnVA(FR) does a better job at guide field recovery, although it too can be
error prone. Similar issues are demonstrated for oblique world lines through a 2-D hybrid
simulation of an oblique supercritical shock. Shock normal systematic errors are 35�
and 20� at the 68% confidence for MnVA(B) and MnVA(FR), respectively. The
eigenvalue ratios that accompany the least error prone MnVA(FR) reconstructions usually
satisfy l2/l1 > 10. Eigenvalue ratios for MVA(B) are rarely this large, and the errors
reported here reflect this circumstance.
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1. Introduction

[2] The orientation and speed of ‘‘free’’ surfaces in space
plasmas are often inferred assuming the recorded variations
are caused by layers of one spatial dimension moving past
the observer. Techniques of this type in the literature that
determine the orientation and speed of such layers are
Rankine-Hugoniot [Viñas and Scudder, 1986], Faraday
residue [Terasawa et al., 1996; Khrabrov and Sonnerup,
1998] and normal mass flux variance [Sonnerup et al.,
2004], which generalize the original Minimum variance
analysis, MVA(B), applied to the vector magnetic field
data [Sonnerup and Cahill, 1968]. In recent years there
are additional techniques attempting to reconstruct two-

dimensional features of these layers from a single spacecraft
[Hau and Sonnerup, 1999] and the multiple spacecraft
techniques with Cluster. Without a current sheet normal
the phase speed of the surface cannot be determined, the
Poynting flux into the current sheet cannot be calculated,
the reconnection rate cannot be determined, and the spatial
scales of the layer interior cannot be reconstructed from the
time series measurements. The three-dimensional orienta-
tion of the local ‘‘natural’’, or ‘‘boundary normal’’ coordi-
nate system must be available before an informed decision
can be made whether the local data support the antiparallel
or component reconnection scenario. These difficult inver-
sions of the time series into geometry, even if done
flawlessly, only partially determine the variables that affect
the recorded time series through the layer. Among the most
unexplored variables are those that control which vectors
are sampled one after another, and, in fact, determine the
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magnitude and orientation of the electric and velocity
vectors recorded at the spacecraft. These variables are those
that define the motion in space and time of the spacecraft
relative to the layer; they are succinctly described as those
that determine the ‘‘world line’’ of the observer. The three
techniques above that determine relative motion only deter-
mine the layer’s speed along its normal and are silent about
both the observer’s relative motion transverse to the normal
and the absolute position along the layer surface where the
spacecraft actually pierces the layer. If the layer is truly 1-D
these ambiguities cause no difficulties and contribute noth-
ing to the time series recorded on the spacecraft. However,
real boundary layers in space possess transverse gradient
scales, whether they arise from separator physics, finite
radius of curvature, surface waves or finite Larmor radius
corrugations. Accordingly, any given time series across
such a layer has embedded variations that can compromise
a time to geometry inversion predicated on the layer’s being
one-dimensional. Issues such as the location of the world
line relative to special structures in the layer (such as the
separator, a minimax in a surface wave, or an especially
intense overshoot in the shock layer) cannot in principle be
determined even when ‘‘the’’ correct boundary normal
system is known. The tangential relative velocity of the
observer also determines what fraction of the time samples
have embedded information of transverse structures that
may be present.
[3] Thus each time series is associated with a world line

parameterized by two unknowable parameters. In this paper
we survey the same, physically realistic, resolved current
layers along many different world lines indexed by these
‘‘unknowable’’ parameters to elucidate the intrinsic uncer-
tainty of recovery of the ‘‘true natural coordinate system’’;
from this systematic ambiguity flows a range of uncertain-
ties about theoretically desirable quantities about the layer,
including the reconnection rate, the size of the guide field,
the size of the mass flux through the layer as well as other
quantities such as the scale size of structures traversed. The
present study quantifies the size and variation of the
systematic errors on the normal, the tangential electric field
and the guide field that reflect the possible spectrum of
unknown world line variables compatible with those prop-
erties that are knowable.
[4] In this way we also provide an estimate of the

systematic ambiguities of derived quantities such as the
guide field or tangential electric field that are controlled by
the geometrical reconstruction errors. The explicit and
controlled calculation of these errors provides a quantitative
reminder that ‘‘transforming to the minimum variance
frame’’ should not be casually done without as many cross
checks as the data set may allow. Failing these cross checks,
the sizes of systematic angular errors for inferred ‘‘special’’
directions in the layer must be increased by more than
an order of magnitude relative to those implied by the
‘‘random’’ error estimates that ensue from considerations
of the eigenvalue spread. Finally, since the normal determi-
nation is only part of the final determination of a boundary
layer coordinate system, it should be clear that questions
involving the projection of some observed vector along a
given, but only inferred, direction or plane are particularly
imprecise. For example, the presence or absence of a guide
field, hinge on inferring the size of such projections. Even

the simple issue of determining the size and sign of the
normal component of B at the magnetopause current layer is
only as good as this coordinate system. Determining the
reconnection rate by determining the tangential electric
field, ET = E � (I � n̂n̂), has a similar difficulty, as does
the direct measurement of the component of plasma inflow
velocity in the current layer’s rest frame. The quality of all
these theoretically interesting quantities are only as good as
the determination of the basis vectors of the boundary layer
coordinate system. While the traditional mathematical
machinery used for such coordinate systems always give
answers, the quality of those answers is not always high.
[5] Throughout this paper we will refer to two tech-

niques: minimum variance analysis, MnVA, and maximum
variance analysis, MxVA. When referring to both we will
revert to MVA. The theoretical foundation for MnVA rests
on conservation laws through layers that have spatial
variations in only one (to be found) direction and are
presumed time stationary. The MnVA was initially formu-
lated for use with the magnetic field alone [Sonnerup and
Cahill, 1968]. This technique will be denoted MnVA(B).
Minimum variance is also involved in the Faraday residue
analysis, MnVA(FR), using E0 and B0 data collected in the
same frame of reference [Terasawa et al., 1996; Khrabrov
and Sonnerup, 1998]. This technique involves a general-
ization of the approach studied earlier by Sonnerup et al.
[1987, 1990], who formulated the moving layer problem by
searching for a transformation to the deHoffmann-Teller
frame and extremizing MxVA(EHT) to define the normal,
while essentially using the MxVA(B) to define the orthog-
onal basis vector. The electric field observed in the space-
craft frame has also been used directly with MxVA; when
such analysis is used it will be referred to as MxVA(E0).
Since the electric field is not a Galilean invariant, care must
be taken when referring to MVA techniques involving E.
We will refer to the electric field measured in the spacecraft
frame as E0, and the electric field in the rest frame of a
propagating structure as E.
[6] Previously three classes of difficulties in MVA have

been discussed: (1) sensitivity of the eigenvalue-eigenvector
algebra to random error, such as digitization error or other
white noise sources, (2) the separation of the eigenvalues
and nonuniqueness of the basis in which the variance is
diagonal, and (3) various aspects of nonstationarity @B/@t 6¼
0. Formulae for estimating sensitivities to uncertainties
of the first two types have recently been summarized
[Sonnerup and Scheible, 1998]. Various recipes have also
been advocated for the third class of problems, including
averaging nearest neighbors, filtering the data against
‘‘unwanted’’ high frequency waves, or removing substruc-
ture of the layer [cf. Sonnerup and Scheible,1998]. Unfor-
tunately, such procedures presume that the user has ‘‘a
priori’’ knowledge concerning layer substructure in the time
records and can excise the @B/@t 6¼ 0 structures so that the
truly time stationary content of the layer is preserved. This
editing must be done carefully (if at all) to not upset the
relative variance of each of the components from the true
spatial variances that the unknown layer would have had in
the absence of the nonstationary behavior.
[7] Two further complications that have received virtually

no attention in the MVA context are (1) the use of proxy
values for E0 when three axis measurements of E0 have not

A08201 SCUDDER ET AL.: WORLD LINE EFFECTS IN MINIMUM VARIANCE

2 of 18

A08201



been made and (2) the quantitative influence of nonplanar
current sheets on the accuracy of these techniques. In the
absence of E0, calculations of the unipolar electric field from
ion flow and magnetic field measurements have on occasion
been substituted [Paschmann et al., 1986; Sonnerup et al.,
1987, 1990]. When three axis electric measurements were
not made, the spin axis component of E0 has been synthe-
sized presuming E0 � B0 = 0 or worked around [Aggson et
al., 1983]. To examine the first class of issues requires a
specific approximation for E0 to be considered and must be
done on a case by case basis. In the second category various
authors use MVA techniques presuming that it determines
the local, average normal to a possibly wavy surface. All
free surfaces in space have some degree of variation in the
direction transverse to the ‘‘true’’ normal; such variations
are ‘‘outside the MVA model.’’
[8] In this paper we explore the systematic errors associ-

ated with determining normals (and related coordinate
systems) as if the layers traversed were one-dimensional,
even though the layers are physically consistent models of
the magnetohydrodynamics and contain spatial variations in
two dimensions. These systematic issues are intrinsic to the
physical problem of deducing the ‘‘natural’’ coordinate
system from a time series of perfect three-dimensional local
measurements of the electromagnetic field. Various relaxa-
tions of the 1-D layer approximation are illustrated in
Figure 1. Figure 1a illustrates an ideal, large radius of
curvature free surface with negligible thickness. Figure 1b
illustrates one level of complication on the situation of
Figure 1a: far from the actual transition the medium is
one-dimensional but contains two-dimensional, or even
three-dimensional, structures internal to the layer. These
structures may be associated with the maintenance of the
layer as with shock overshoots in supercritical shocks, finite

Larmor radius features or surface waves. Surface waves
have been posited on the magnetopause, possibly as a result
of Kelvin-Helmholtz instabilities. Hybrid codes resolving
the physics of the magnetopause/shock layers reveal finite
Larmor radius substructures that will be sampled on a given
pass by spacecraft. Gyrating ions support two-dimensionally
structured density and magnetic field overshoots in super-
critical shock waves behind the main current ramp of the
shock with scale sizes comparable to the convected ion
inertial length. Such phenomena have been inferred in
supercritical shock layer studies [Scudder et al., 1986] and
also seen in 2-D Hybrid simulations of supercritical shock
waves [McKean et al., 1995]. Presumably all transitions in
space physics have finite ion Larmor radius substructures
that produce an admixture of irreducible 2-D effects.
Figure 1c presents a schematic section of separatrix layers
near a reconnection site. Such a regime has half-spaces
where the current layers are quasi 1-D, but a portion of the
layer contains explicitly two-dimensional variations. In
particular, the x component of the magnetic field (parallel
to the global normal) reverses sign in this region presenting
@Bx/@x 6¼ 0, reflecting the two dimensionality of the layer.
While r � B � 0 everywhere in these solutions, that null
result arises from compensating spatial variations along and
transverse to the local normal. At its core MnVA presumes
that this null divergence is a corollary to the one-dimen-
sional variation through the layer, and that Bx = C, inde-
pendent of space. The observer’s problem then, is just to
find the direction where that is true. Neither MnVA(B) nor
MnVA(FR) will be free from systematic errors that ensue
when these techniques are used in the vicinity of the
separator. The observer who does not cross the separator
regime, but crosses the current layer at a large angle to the
normal, will also record a spatially varying component of B
along the global normal; MnVA(B) proceeds to choose a
normal that will reduce this intercepted variance as best it
can, by reorienting the normal. Information such as this that
is outside the posited 1-D layer model of MVA is unavoid-
ably folded into the normal selected by MVA and can distort
the reported morphology of QBn dependencies determined
using this technique [e.g., Meziane et al., 2002]. Finally,
Figure 1d illustrates a transition that is not locally planar on
either outer or inner scale.
[9] With the evolving Polar, Geotail, Cluster and pro-

posed MMS orbits, skimming trajectories oblique to the
local free surface normals have become more common-
place. As shown below, the larger this angle, the larger the
expected systematic error on MVA normals. The fully
defined world line of the observer determines what effects
of the higher dimensionality of the current sheet are
embedded in the time series used for MVA.
[10] While statistical analysis of large suites of current

layers can discard layers that do not ‘‘cooperate’’ with the
1-D preconditions of MVA, there remains the ongoing use
of MVA for boundary coordinates for ‘‘singular’’ case
studies where analysis ‘‘must’’ go forward [e.g., Mozer et
al., 2002]. If such a ‘‘unique’’ magnetopause crossing has
ideal instrument coverage with appropriate time resolution
and is a ‘‘textbook’’ example needing such a coordinate
system, how far should the quantitative analysis of the data
proceed as if the normal is that determined by MnVA(B)
and associated random error cones determined from

Figure 1. Various ways to break 1-D approximations at
boundaries: (a) weakly, with no internal structure and large
radius of curvature; (b) asymptotically weak violation, with
nested higher-dimensional variation confined to the layer;
(c) singular variant of Figure 1b such as near the separator
of magnetic reconnection; (d) gross violation of the 1-D
approximation.
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eigenvalue analysis? Are the random error bounds of this
‘‘inverse’’ model so reliable that other measurements sug-
gesting a slightly different normal outside the MnVA(B)
error cones should be discarded? Is the selection of a MnVA
coordinate system that has normal component of B sensibly
‘‘constant’’ a proof that the layer diagnosed ‘‘really is one-
dimensional’’? Are there warning signs in the data set that
are not associated with the MVA proper that can signal the
likelihood of large systematic errors? If MnVA(B) and
MnVA(FR) agree at some level of precision, does this imply
that the normal is accurately known to be in the overlapping
error cones and the layer planar? Do composite tests, like
MnVA(FR), that involve electric and magnetic fields sur-
mount this problem, or are they as weak as their weakest
link? We propose to shed some light on this and related
problems by solving the associated ‘‘forward’’ problems at
theoretically complete magnetopause and shock current
layers, contrasting the MnVA normals with the normals
known to the simulators of these layers. In this way we will
map the systematic errors of the MnVA inversion process
itself, having an absolute control on the direction of the
normal.
[11] A critical discussion of the background of minimum

variance techniques and their generalizations is summarized
in Appendix A. There the close relationship between the
variance matrix and the moment of inertia matrix from
classical mechanics is developed to given an intuitive feel
for the nature of the approximations involved when using
MVA techniques on real boundaries, as if they were one -
dimensional ones.

2. Model

[12] The present paper contrasts the true current sheet
normal with the MnVA(B), MnVA(FR) and the MxVA(E)
directions determined from time series deduced as an
‘‘observer’’ tours a fully resolved ambipolar, Hall MHD
reconnecting current sheet [Ma and Bhattacharjee, 1996] or
a hybrid model of an oblique supercritical shock layer
[McKean et al., 1995]. In this way we determine the
systematic errors involved by contrasting the local current
sheet boundary normal suggested by MVA with the actual
normal known to the global simulation. The present ap-
proach differs in two ways from the previous analysis of the
MVA approach: (1) a spatially resolved, physically consis-
tent, time stationary current system with a known normal
and guide field size is sampled by an observer moving
through the structure along a prescribed world line with a
velocity C inclined at an angle a to the true layer normal.
This observer moves along the layer normal with a speed
Cn = C cos a; (2) the current layers inventoried contain
physically consistent, time stationary, two-dimensional
spatial variations of E, B.
[13] The magnetopause current layer simulations to be

used have three variants: those with (1) no guide field,
(2) small guide field, and (3) strong guide. The ignorable
coordinate in these simulations is the ŷ direction, the
direction of the constant (and possibly vanishing) guide
field imposed as a boundary condition. The three magneto-
pause solutions are delineated by By(x = ±1) = [0, 0.1, 1]
Bz(x = 1), respectively. The z components of the asymp-
totic fields are those that are interconnecting, while the x̂

direction in the simulation is the symmetry axis for the
plasma inflow and is the true normal direction, n̂T. Even in
the presence of separatrices with finite opening angles, the
asymptotic inflow direction is well defined and is the axis
along which the reconnection rate is determined and for
which the boundary normal is desired.
[14] The rest frame observer’s catalogue of the spatial

variation of E and B along a spatial path through the
solution are used to construct a ‘‘time series’’ of the
electromagnetic field E0(t), B0(t) that a spacecraft born
sensor would record for subsequent use with MVA. For
survey purposes we consider a family of linear spatial paths
in the x-z plane as world lines for sampling the solution.
The equations of these world lines are parameterized by the
angle a between the world line and the true normal, and the
intercept Zo() along the current sheet where the world line
pierces the current layer. Thus the surveyed paths have
equations of the form z = zo + x tan a. When comparing
world lines with different slopes we modify the velocity, C,
so that the phase speed, Cn, along all world lines is the
same.
[15] The electromagnetic field in the rest frame of the

simulation was interpolated onto a uniform rectangular
mesh spanning the ranges: jzj 
 2 and jxj 
 1, where
distances are measured in asymptotic ion inertial lengths,
di = c/wpi. The interpolation of the solution onto a mesh
effectively replicates the sampling of the field at periodic
intervals, guaranteeing that the time profile of the field along
the world line does not over sample the regions where the
electromagnetic field is strongly varying that required extra
grid resolution in the numerical code. Only the world lines
that transit the entire x range of the solution along the
normal are analyzed. We consider 31 values of jzo(i)j < 4
and 31 equispaced values of aj. Of these 31 � 31 possibil-
ities we only examined world lines sij that satisfied zo

2(i) =
tan2 a (j) 
 4. Along the world line sij the spatial sequences
of B(sij) and E(sij) were catalogued as reported by the steady
state output of the computer code. These sequences of the
electromagnetic field were then transformed according to
Galilean relativity to produce the electromagnetic field that
would be recorded on the spacecraft:

E0 sij
� �

¼ E sij
� �

þ C� B sij
� �

=c;B0 sij
� �

’ B sij
� �

:

These modified sequences of E0, B0 are now parametrically
ordered by the spacecraft observer’s clock. Here we recall
our convention that the primed E0 fields are those seen on
the spacecraft which are different from those recorded by
the rest observer in the simulation, E. From these
transformations it should be clear that for the moving
observer the spatial variations of B transverse to C add
correlated spatial variations to each component of E0, so that
covariance matrix C( of the MVA technique when used with
electric fields (is different in the spacecraft frame than in the
layer’s rest frame: C( (E0) 6¼ C( (E), while C( (B0) ’ C(B).
[16] Each sequence of the electromagnetic field along its

world line sij determines, via MnVA(B0), a proxy current
sheet normal n̂B(i, j); another proxy normal n̂FR(i, j) can be
obtained via MnVA(FR); and another one, n̂E0(i, j, C), via
MxVA(E0(sij), C). The variance matrices and the inferred
proxy normals will change as the world line specification sij
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and relative velocity, C, change. Having established how
the pseudo spacecraft data E0, B0 sequences are determined
from the spatial variation of the simulation’s (E, B) and the
world line of the observer, we suppress the primes in the
subsequent discussion. Unless noted otherwise all subse-
quent analysis using MVA is performed on quantities as
they could be observed on the moving spacecraft.
[17] Since the true normal, n̂T, to the current sheet is

known from the simulation, we also record the angular
deviations of the various proxy normals, n̂‘, ‘ = {B, FR, E0}
from the true normal dq‘ = cos�1 n̂‘ � n̂T for each world line
sij and choice of front phase velocity. Of auxiliary interest
are the deflections of the proxy normals in the X-Y and X-Z
planes given by

dq‘;X�Y ¼ tan�1 n̂‘ � ŷT
n̂‘ � n̂T

dq‘;X�Z ¼ tan�1 n̂‘ � ẑ
n̂‘ � n̂T

:

[18] For the data collected on each world line sij, Cn we
have also determined the recommended maximum half angle
of the random error cone about the MVA normal direction
for each n̂‘ [Sonnerup and Scheible, 1998; Khrabrov and
Sonnerup, 1998], labeling them DqK�S

‘ (i, j). These three
quantities are then used to scale the size of our detected
systematic errors.
[19] With the inferred eigenvectors, Êj

‘ in hand, we have
also routinely checked the reverse diagnosis of the guide
field that such analysis would infer by recording B2

‘(t) = Ê2
‘ �

B(t). Because the Hall effect perturbations are normally seen
along this or similar directions, we form D�‘, the difference
of the time average of B2

‘ and the known asymptotic guide
field along the true y, guide, direction, By(x =1), in units of
the variance of B2

‘ about the average which we will denote
as sB2

‘ , obtaining

D�‘ � hB‘
2 tð Þi � By x ¼ 1ð Þ

sB‘
2

:

[20] With MnVA(FR) we similarly inventory the errors in
the inferred size of the tangential (reconnection) electric
field strength in the layer’s frame as

DX � ET MnVA FRð Þð Þ � ET x ¼ 1ð Þj j
s ETj j :

[21] Finally, the above process was repeated for each
guide field solution at 8 phase speeds Cn = {0.1, 1, 3, 5,
10, 15, 30, 50} km/s for all angles a and intercepts zo
permitted. A similar, but less extensive diagnosis of varying
world line parameters, is discussed below for a hybrid
code’s description of an oblique supercritical shock layer.

3. Results

3.1. Modeled Magnetopause Current Layers:
MnVA(B)

[22] To summarize, the over 100,000 MVA analyses
performed on these magnetopause and shock layers we

establish a format for subsequent figures using the no
guide field model of the magnetopause as our first
example. Figure 2 shows color-coded matrices Wij(Cn),
whose i, j indices label the spatial locus of the world line,
sij, where E and B were sampled while moving at a
uniform speed chosen for this example to be Cn =
15 km/s. The variation of an MVA attribute, here gener-
ically called W, is indicated by the color coding of Wij at
each pixel location. The W quantities color coded are

DqB(i, j) (Figure 2a), DqB,X_Z(i, j) (Figure 2b),
max B sij

� ��� ��
min B sij

� ��� ��
(Figure 2c), and DqB,X_Y(i, j) (Figure 2d), as previously
defined above. The gray portions correspond to world
lines that do not satisfy our traversal constraints summa-
rized above.
[23] In Figure 2a, there are many world lines where the

disagreement, DqB, between the MnVA(B) n̂B and the true
normal to the current sheet exceed 20�; sometimes this
disagreement is as large as 90� with all values in between.

Figure 2. Overview of systematic errors in normals
derived from MnVA(B) along a spectrum of world lines.
Cn = 15 km/s.
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Particularly good agreement occurs for a ’ 0, world lines
that make a shallow angle with the true normal (provided
that they also do not go too close to the separator, zo ’ 0).
Even for normal incidence the Hall magnetic signatures
together with the transverse gradients in the true normal
component of the magnetic field disturb the normal recov-
ery. Similarly, the world lines that go through the separator
sense serious transverse gradients and the normals
for MnVA(B) are invariably unreliable. Referring to
Figure 1c, it is clear that such trajectories contain substantial
variations at odds with the 1-D premise of MnVA(B).
Figures 2b and 2d illustrate that these disagreements are
caused by the inferred MnVA(B) normal canting toward the
±ŷ, (out of plane, ignorable) directions of the simulation.
The error of the MnVA normal is primarily a reflection of
variations of DqB,X�Y, with only modest deflections in the
X-Z panel of Figure 2b. The reason for this asymmetry in
the aberration of the MVA normal from the true normal
stems from the anchoring nature of the Z direction as
essentially that of the maximum variance across layers with
strong magnetic shear. Because the strongest variation of B
at the magnetopause in these examples involves the inter-
connecting and reversing components (except in the strong
guide field case), sampling its complete reversal (while the
guide field remains steady) virtually dictates the direction of
maximum variation direction will be along the ẑ direction
of the simulation. Although the asymptotic tangential
component of B at shock waves do not reverse, they are
preferentially weakened or strengthened, identifying the
Ê3 � ẑ direction (except for quasi-parallel shocks) as one of
strong variation. What remains unspecific is the selection of
‘‘the’’ minimum variation direction from the infinite number
possible in the plane perpendicular to the maximum vari-
ance eigenvector. This second direction, and hence the
‘‘normal’’ direction usually inferred from it, is only com-
putationally unique when the minimum and intermediate
eigenvalue are well separated. As we have argued the
MxVA(B) direction is well defined, so this comparison of
eigenvalues comes down to the variance along the true
normal (witnessed along the actual world line) versus the
variance of the components of B (witnessed along the actual
world line) generally in the ŷ direction. When the world line
passes through layers where Bx = f(z), as near the separator,
the search for the minimum variance direction cants into the
third, and relatively unconstrained ŷ direction to minimize
the variance. As shown below the layer variance in By = h(x)
in shocks ‘‘resists’’ this tendency, assisting MnVA(B) nor-
mals at shocks to fortuitously be more precise, overall, than
the magnetopause. Nonetheless, even at shocks as shown
below they are not of high quality, and frequently shock
geometry is determined using blunt body models, rather
than local normals from techniques like MnVA.
[24] The slight deflections of the proxy normal indicated

in Figure 2b reflect the small deviation, (�5�) of the
MxVA(B), eigenvector as determined by all these world
lines; by contrast, the large deflections indicated in
Figure 2d reflect the vagaries of actually picking a direction,
Ê1 within the plane perpendicular to Ê3 that minimizes
the variance projection as seen along the peculiar world
line folded into the minimum variance matrix, C( .
[25] Figure 2c indicates that it is not possible by

considering the variation of jBj seen along the world line

to differentiate which world lines give higher quality
normals than others. If reconnection proceeds at a null
point with no guide field, clearly such world lines will
advertise this circumstance with high magnetic field inten-
sity contrast along them. (However, a further complication
is that an ideal rotational discontinuity can produce layers
where the magnitude of B varies in the presence of
pressure anisotropy, without being near the separator [cf.
Hudson, 1970].) Such world lines are expected to have
high degrees of spatial variation transverse to the normal.
However, one may not invert this argument to say because
jBj does not vary strongly that the world line is far
removed from the separator and strong transverse scales
since with a guide field the separator could have been
penetrated without a strong contrast in the field’s magni-
tude. Additional sources of intrinsic two dimensionality at
the magnetopause are the expected quadrupolar, Hall
MHD, perturbations of the magnetic components out of
the x-z plane, which also have spatial dependence in the

Figure 3. Overview of systematic errors using MxVA(E0)
along the same world line trajectories as in Figure 2, but
from the wrong (i.e., spacecraft) frame, moving with Cn =
15 km/s along the normal.
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X-Z plane. Hence any oblique world line to the normal
passing with jzoj 
 O(c/wpi) will sense this variation
(required to make it a quadrupolar pattern) and locate
the minimum variation direction as a tradeoff between
catching the variation of Bx(z) in one extreme or By(z) in
the other.
[26] Figure 2 illustrates that the path of the observer’s

world line does determine different admixtures of 2-D
effects embedded in the variance matrix, which, in turn,
impact the quality of the inferred normal. Accordingly, the
possible errors in the normal on any given time series could
be as large as the largest mistakes illustrated in Figure 2a,
i.e., 90�. Below we summarize the distribution of such
normals, illustrating for the magnetopause that the proba-
bility for getting the correct normal via MnVA(B) is very
flat, with no ‘‘typical’’ systematic error that should be
considered on any given world line.

3.2. Modeled Magnetopause Layers MxVA(E000000000)

[27] Figure 3 illustrates the results of MxVA(E0) in the
same format as Figure 2 as performed on the electric field,
E0, available in the spacecraft frame. While Figure 3 does
illustrate some world lines that pierce the separator nearly
along the normal where the maximum variance eigenvector
is as close as 20� to the true normal, this precision is
atypical. This fortuitous agreement occurs since the mag-
netic field along these paths is so weak that the Galilean
corrections present in E0 are not as substantial as occur for
other world line paths. For almost all other world line
geometries the error in the normal determination is so
prohibitively large to make this technique worthless!
[28] To clarify the role of 2-D effects versus the (inap-

propriate) analysis of E0 (as if it were E), we have conducted
the same MxVA analyses on a truly 1-D variation model of
a RD with a finite transition layer. The data are acquired
moving with the same relative speed Cn = 15 km/s for the
same range of world lines as in Figure 2; the errors in the
inferred normals are summarized in Figure 4. By construc-
tion there are no spatial variations in the modeled layer
transverse to the normal; as seen in Figure 4, all Wij entries
are (essentially) independent of the intercept of the trajec-
tory (small differences reflect different numbers of data
points depending on zo, while world lines of different
inclinations, a, at constant Cn are traversed with different
speeds, so that the departure of the E0 data from the
rest frame E is almost exclusively organized with a which
determines the final orientation of C. All of the errors DqE0

of this MxVA(E0) from the true normal are attributable to
the analyzed data having been collected in the wrong frame
relative to the rest frame of the 1-D spatial structure. As can
be seen these effects are a primary factor in the normal
errors, while the 2-D effects illustrated in Figure 3 add
structure to the errors as a function of intercept of the
trajectory relative to the separator. In any case the use of
MxVA(E0) at RD, TD or oblique shock layers (with visible
sheer in B) is a broken lever.

3.3. Modeled Magnetopause Layers: MVAWith
Electromagnetic Field (MnVA(FR))

[29] The MnVA(FR) technique is, however, designed to
compensate for E0 data having been collected in a frame that
is not the rest frame of the current layer. This technique
simultaneously determines the optimal frame transformation
speed along the normal, Cn, while also estimating the
normal direction. We illustrate in Figure 5 the errors by
this technique in the recovery of the normal direction at the
same 2-D no-guide model that underlies Figure 2 of the
magnetopause. Since the Faraday residue technique strives
to minimize the variation about an optimal choice of
minimum variance of B and of minimum variance about
the choice of ET in the layer’s rest frame, we might
anticipate better normal recovery of the layer properties
with MnVA(FR) in the presence of 2-D effects than with
MnVA(B) alone. This is illustrated in Figure 5a, where the
Faraday residue normal errors are usually less than 20� and,
in Figure 5c, within 45% of the true relative speed of
propagation. Figures 5b and 5d show, however, the same
bias to the errors of the normal as seen in the MnVA(B)
survey of Figure 2, with the error in the X-Y plane 7–
10 times that in the X-Z plane. The overall error amplitudes

Figure 4. Overview of systematic errors using MxVA(E0)
along the same world line trajectories as in Figure 2, but
examining a resolved truly 1-D rotational discontinuity
structure, but from the wrong (i.e., spacecraft) frame. Cn =
15 km/s.
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are significantly reduced versus MnVA(B). For any given
crossing of the magnetopause layer, a single spacecraft’s
time series does not determine which Wij pixel on the W
chart pertains to the data under study. Thus the variability in
the reconstruction exhibited here is a measure of the
systematic uncertainty of inferring the normal to be in a
particular direction as computed by MnVA(FR) for a
specific time series. The strongly varying, world line-
dependent natures of this uncertainty, makes it difficult to
enhance the precision of the normal tighter than the worst
error values in Figure 5. The relative speed of the structure
inferred by this technique is neither high nor low relative to
the correct value, although not symmetrically so.

3.4. MnVA(B) Versus MnVA(FR)

[30] A statistical picture of the scatter in Figures 2 and 5
is organized in different ways in Figure 6. Figure 6 (top)

provides information on the accuracy of the derived normal
when MnVA(B) and MnVA(FR) are both determined for the
same world line. The horizontal axis is the angle in degrees
between such inferred normals, while the ordinate is the
lesser angular error to the true normal by either of the
techniques. Arguments are made in the literature [e.g.,
Mozer et al., 2002] that if the normals from MnVA(B)

Figure 5. Overview of systematic errors MNVA(FR) for
(a) normal recovery error, (b) normal error in x-z plane,
(c) error in Cn, and (d) normal error along the x-y plane
along the same world line trajectories as in Figure 2
for magnetopause layer with no guide field but two-
dimensional structures. Cn = 15 km/s.

Figure 6. (top) No guide field. (bottom) Correlation of
quality of normal recovery from MnVA(B) on the x axis
versus same quantity from MnVA(FR): DQB versus DQFR.
In Figure 6 (top), symbols in red indicate the rare
occurrences when the MnVA(B) normal is more nearly
the correct normal than that from MnVA(FR). Ordinate is
always better error estimate to the true normal. Abscissa is
the angle between the MnVA(B) and MnVA(FR) normals.
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and MnVA(FR) are close to one another, that they must be
‘‘collectively’’ close to the true answer and their precision is
like their angular separation. The scatter of normal deter-
minations on different world lines in this Figure 6 (top)
illustrate (1) that MnVA(B) and MnVA(FR) normals are
most frequently well separated and (2) that even when
agreeing they can simultaneously not point in the true
normal direction. This second conclusion is supported by
the points in Figure 6 with negative slope that approach the

left axis. At the same time there are also world lines (near
the origin of this plot) where both methods give the same
answer and both are nearly correct. This picture does not
give a probability that either possibility is realized, but it
does demonstrate that the following argument should not be
used: ‘‘Because normals derived by MnVA(B) are close to
those of MnVA(FR), the true normal is reliably inferred to
be in the vicinity of these two normals.’’ A better argument
would be to use MnVA(FR) as the more generally correct
normal direction in almost all cases, but to then still proceed
with that normal propagating a 1s systematic error of order
20�–25� as illustrated in Figure 6. Carefully done this
would also imply letting the direction associated with the
intermediate eigenvector also move to continuously provide
an orthonormal basis. These effects impact the inferred size
of the guide field or the tangential electric field since this
basis ambiguity allows projection from irrelevant directions
that may be large (such as BT and dominate the inferred size
of these projections). This estimate of uncertainty derives
only from the two-dimensional character of the layer; any
miscalibrations amongst the three components of B0 or E0

will reduce the precision further. These plots also show that
the determination of the normal from magnetic data alone
can be fraught with imprecision of a systematic type
including errors that are essentially without preference
between 0�–90�.
[31] Figure 6 (bottom) illustrates the organization of

errors of the normal via MnVA(FR) with those via MnVA(B)
on the same data set. Different points in Figure 6 (bottom)
correspond either to different (1) trajectories across or
(2) relative speeds along the normal to the layer. The general
trend is to find the DQFR usually small and less than 20�
even as DQB ranges from 0� to �90�. This summary
examines all the different ways a no guide field layer could
be presented to an observer and illustrates that the normal
via MnVA(FR) is generally superior, although not always
flawlessly close to the true normal (particularly as DQB ’
70�–90�.
[32] The construction of Figure 6 considers all world lines

and trajectories through the same current sheet that pos-
sesses no guide field. Using spacecraft measurements, the a
priori size of a guide field is unknown; accordingly a variety
of guide fields must be considered when deciding the
precision of the normal. A fairer presentation of the ambi-
guity of the normal given that the world line and guide field
size are unknown is illustrated in Figure 7. The same format
is used here as in Figure 6 to illustrate the larger systematic
error on MnVA(FR) required in this situation, and the
ongoing occurrence of circumstances where the MnVA(B)
and MnVA(FR) can agree with one another at small angular
separations, even though neither of these estimates is really
close to the true current sheet normal.

3.5. Overview of Systematic Versus Statistical Error
Estimates Using MVA

[33] The angular errors determined from the same self
consistent no guide field 2-D current layers using
MnVA(B), MxVA(E0), MnVA(FR) techniques are con-
trasted in Figures 8a, 8b, and 8d. These systematic errors
are expressed in units of the statistical error for each
technique and world line DQK�S(i, j). For reference, the
systematic error in degrees of the normal determined by

Figure 7. All guide fields. (top) Correlation of Minimum
error to true normal with angle between MnVA(B) and
MnVA(FR) suggested normal. Symbols are plotted in red on
rare occasions when the MnVA(B) normal is more nearly
the correct normal than that from MnVA(FR). (bottom)
Correlations of errors of MnVA(FR) with MnVA(B).
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MnVA(FR) is illustrated in Figure 8c. The systematic
effects at the 2-D current sheets give rise to imprecisions
DQB that can be more than 200 times (see Figure 8a) the
sizes implied by the random error estimates of Sonnerup
and Khrabrov for the data collected on these world lines.
Almost without exception the systematic errors on
MxVA(E0) exceed 200 times that by formal eigenvalue
analysis. As expected the systematic errors of MnVA(FR)
are not only smaller than the errors of the normal from
MnVA(B), they are also generally smaller in units of the
statistical errors (20–60 times the random errors on the
basis of their eigenvalue separations; see Figure 8d). For
those trajectories that pass near or through the separator
MnVA(B) performs particularly poorly, while MnVA(FR)
recovers the normal well in absolute terms. For the
geometry inversion, these findings make a particularly
strong case for making accurate, 3-D electric field mea-
surements without proxies, and with all three components

aliased over the same spatial scales in the plasma, so that
MnVA(FR) can be routinely employed.
[34] The ensemble of errors at the magnetopause simu-

lations surveyed in our study are assembled in the form of
an expected error probability distribution (presuming no
knowledge of world line) presented in Figures 9a and 9b for
MVA(B) and MVA(FR) analyses separately. Figures 9a and
9b demonstrate that (1) rather routinely, MVA(B) does not
provide a defensible normal, while (2) the less frequently
used MVA(FR) can do so even in the presence of layers
with two-dimensional substructure, provided the experi-

Figure 8. (a, b, and d) Systematic versus statistical error
diagnostics on 2-D current sheet with no guide field.
Observer is moving with Cn = 15 km/s. (c) Absolute size of
systematic error in MnVA(FR) normal analysis in degrees.

Figure 9. Overview of systematic errors in normals
derived from (a) MnVA(B) and (b) MnVA(FR) along a
spectrum of world lines, including variations in normal
phase speed and considering layers of different guide field
strength: blue, no; green, small; red, large. (c) Efficacy of
guide field recovery, D� via MnVA(B) (solid traces) and by
MnVA(FR) (dashed traces), where guide field strengths are
indicated by the same color codes as in Figures 9a and 9b.
(d) Quality of recovery of the magnitude of the tangential
electric field, DX, using MnVA(FR) normal and determined
phase speed, Cn, again color coded for guide field strength.
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mentalist propagates a rather large 1s normal uncertainty of
�20� for no guide field layers through all computed
results, including the implied imprecision of the adopted
coordinate system influenced by the ambiguous normal. As
the strength of the guide field grows to be comparable to
the reconnecting component, the normal recovery of
MnVA(FR) improves; this result presumably stems from
the increased numerical importance and variability of the
intercepted By(t) profile. Figure 9c illustrates the distribu-
tion of D�, the departure of the inferred guide field from
that in the simulation in units of the perceived variance of
this component of B in the data. When a technique recovers
the quantity on average, the mode of the histogram will be
centered about zero. Having normalized the departures by
the variance, ‘‘serious’’ discrepancies go with increasing
absolute value of the modal values of the histogram.
Figure 9d illustrates the quality, DX, of the recovery of
the average modulus of the tangential electric field from
that in the simulation. Zero DX denotes a perfect recovery
of the tangential electric field. These quantities involve
projections of the electromagnetic field along directions
determined by MnVA(B) and MnVA(FR) for all trajectories
and all phase speeds as a color-coded function of size of
guide field present: (blue none; green small; red large).
When present MnVA(FR) determinations are illustrated
with dashed segments, while those of MVA(B) are solid
traces. Curves with the same color indicate sampling of
model layers with the same imposed guide field.
[35] By construction the guide field for blue curves of the

model solution is zero. Since the guide field itself is the
average of a projection of B along the intermediate eigen-
vector’s direction, this quantity is expected (by our results
above for MnVA(B)) to be rather volatile, especially when it
is noted that the direction of maximum variance is essen-
tially fixed, but the direction of minimum variance is
usually poorly determined (see Figure 9a). The mode of
the blue solid histogram in Figure 9c is well removed from
0, indicating that the guide field estimates from MnVA(B)
coordinate assignments will not usually be accurate, and
erroneously suggest that a guide field has been inferred for
the no guide (blue) model. For other guide field strengths
MnVA(B) is not particularly persuasive, since the variance
along this direction is enhanced due to the Hall variability in
that direction. By contrast the guide field recovery with the
MnVA(FR) coordinate system (indicated by the dashed
histograms in Figure 9c) is notably more accurate, usually
determining the guide field correct regardless of guide field
strength. The dashed green histogram is nearly centered
about zero, indicative of an on average recovery. Notwith-
standing this improvement in performance the MnVA(FR)
approach still suggests a sizable wing on the distribution
even for the magnetopause layer with no guide field present.
Hence extreme caution must be used when inventorying the
evidence for a guide field from the adopted boundary
normal coordinate picture of the layer, even if the normal
and frame transformation was obtained by MnVA(FR).
[36] Since the MnVA(B) approach does not determine the

front speed of the current layer, it cannot infer the conserved
size of ET. A benefit of the MnVA(FR) method is that an
estimate can be made of the rest frame tangential electric
field. Figure 9d illustrates that with MnVA(FR) the recovery
of this quantity is often in error on the order of the variance

on the magnitude of the tangential electric field across the
layer. For any given estimate of ET, its precision with
MnVA(FR) is of the order of 1

2
sET

.

3.6. Eigenvalue Ratio L2/L1 as Index of Errors in 2-D
Layers

[37] There exist in the MVA literature various suggestions
for culling ‘‘good’’ and ‘‘bad’’ normal determinations based
on the spread of the intermediate, l2 to smallest, l1,
eigenvalue of the MVA [Siscoe et al., 1968; Lepping and
Behannon, 1980]. While some authors accept a normal
when l2/l1 > 2, the most recent review of this subject
suggests this ratio should exceed 10 to be assured of
detecting an accurate normal [Sonnerup and Scheible,
1998]. Some of this variation of opinion may stem from
the range of realism of the models examined in the early
simulations that did not include self consistent variations of
the physical variables through the discontinuity [Lepping
and Behannon, 1980] or had such coarse time resolution
that 2-D layer substructures were almost never involved in
the minimum variation process [Siscoe et al., 1968].
[38] Reverting to the moment of inertia analogy of the

covariance matrix discussed in Appendix A, disparate
eigenvalues imply their associated eigenvectors are well-
defined directions for simple rotation of the distributed
mass. With real complications of time series, a related
question to eigenvalue separation is the susceptibility of
such a ratio to modifications by the various noise processes
that accompany the data acquisition process itself. Clearly
there is no general answer to this problem, unless there is a
complete understanding of the sources of aberrant informa-
tion in the time series that goes under the general sense of
‘‘noise’’ whether it is random or not. The discussion of this
paper is about the role of 2-D variations in data sets being
processed as if they were 1-D structures. In the general
sense the 2-D structure embedded in the sampled time
series represents highly correlated variations on the three
components of B0, E0 superposed on the closest related
1-D electromagnetic structure. This ‘‘noise’’ need not be
random, especially if it is being orchestrated by time-
independent PDEs of the layer’s possible reconnection
electrodynamics. Using our moment of inertia problem for
ease of visualization, these 2-D effects are like sprinkling
mass on a body with well defined principal axes of inertia
(well-separated l values) and hoping that the new eigen-
vectors will not be reoriented after the new mass has been
added to the body. The eigenvalue ratios available from the
data processing are like those of the perturbed moment of
inertia distribution; inverting from those directions the
original mass distribution is difficult. Here too, we illustrate
with our forward problem that diagnosing the importance of
2-D pollution in any given normal determination is not
helped by studying the entrails of the eigenvalue ratios that
are realized.
[39] We consider in Figure 10 all the world lines surveyed

in our three simulations of the magnetopause with no, weak
and strong guide fields; each row refers to a different guide
field strength magnetopause model. Syntheses of eigenvalue
analysis from MnVA(FR) determine the Figures 10a–10c,
while those from MnVA(B) determine Figures 10d–10f.
The ordinate of each plot is the absolute systematic error
of normal recovery determined by this paper, while the
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abscissa is the eigenvalue ratio l2/l1. Each cross plotted is
the synthesis of a different MnVA determination along a
different world line. The incidence of l2/l1 > 10 is only
achieved with MnVA(FR) analysis on a subset of world
lines; such eigenvalue ratios for MnVA(B) at the magneto-
pause for this data set are nonexistent. The occurrence of
small normal errors (<20�) by MnVA(FR) is strongly
organized by the enhanced eigenvalue ratio; conversely,
very bad normal recovery by MnVA(FR) is strongly asso-
ciated with l2/l1 
 2–4, with the lowest threshold for the
no guide field simulation. Since most simulated and (actual)
world lines for MnVA(B) analysis yield l2/l1 
 4, it is not
surprising that their normal recovery is also uniformly poor.
In passing, it should be noted that when interpretations have
relied on inferred geometries at current layers, eigenvalue
ratios l2/l1 > 2 may have been retained to have examples

for further categorization. Such studies may need to be
revisited since the present comparisons with the known
normals of the simulations suggest that such normals and
geometry were retained essentially out of exasperation,
rather than any assurance that the directions inferred were
of high precision.
[40] With the advent of direct measurements of all three

components of E0 on electrodynamics missions such as
Polar or MMS, the use of MnVA(FR) should allow a more
routine inversion of more precise geometry on any given
event. From this study it is the one spacecraft technique of
preference (short of a fuller Rankine Hugoniot MnVA),
although it still has its intrinsic limitations in the presence of
two-dimensional structures.

4. MVA of a Resolved, Oblique, 2-D
Supercritical Shock Layer

[41] In the magnetopause layers studied above the two-
dimensional subtext of the layer is a large-scale feature of
the layer, with separatrices separated to frame a magneto-
hydrodynamic exhaust which must be present in any steady
state reconnection picture. If this analysis were repeated
with at least a hybrid code’s resolution of ion gyroscale
phenomena, additional sources of higher dimensionality
would also influence the normals. An example of such
structures is revealed in the current layer of a supercritical
shock which we now illustrate with the help of a hybrid
solution. The analysis of a supercritical MA = 8, oblique
(qBn = 65�), be = bi = 0.5 shock layer is presented in
Figure 11. The speed of light in units of the Alfven speed
is 6000. Figure 11a shows the systematic error of the
MnVA(B) normal from the true normal as a function of
where the world line pierces the layer (labeled Zo/di) and the
angle a of the world line as measured from the normal. This
overview has been determined along world lines with Cn =
15 km/s. Since B is Galilean invariant, the MnVA(B)
overview in (A) is typical of other values of Cn.
Figure 11a reveals the uneven precision for recovery of
the normal with MnVA(B). There are localized, but large,
errors in the normal recovery (orange-red >70�) indicated
in Figure 11a. These places have been highlighted in
Figure 11a with a superposed diamond. The world lines
that yield especially poor normal recovery of Figure 11a are
indicated with black lines in Figures 11b and 11c super-
posed on the spatial variation of jB(x, z)j and Bx(x, z),
respectively. Along these unusual world lines the MnVA(B)
procedure infers that the current sheet normal is well
removed from the x direction, the true simulation normal,
because the recorded variation of Bx has a significant
variance along the path (see Figure 11). From our 2-D
perspective and Figure 11c this variance is understandable.
[42] Within the 1-D premise of MnVAwe also understand

how the method picks another direction away from the true
normal so that the variance of the observed Bx(t) will be
deemphasized. As an example, if the perceived variance in
Bx(t) is large, shifting the reported normal to an oblique
angle to the coplanarity plane would reduce the perceived
variation along that direction. Unlike the magnetopause
simulations the large values of DQB > 45�, occur in
disorganized ‘‘clumps’’ in Figure 11a. Physically, these
‘‘error clumps’’ occur when world lines penetrate structures

Figure 10. (a–c) Error of the normal direction determined
via MnVA(FR) only as a function of l2/l1 and the evolution
of such patterns with guide field strength. Each plot
contains all world lines sampled for that guide field with
that diagnostic technique. (d–f) Same diagnosis of the same
layers, but now using MnVA(B). Because MnVA(B) does
not have Cn sensitivity, there are fewer distinct symbols,
while this dependence spreads out such readings in the
upper row of MnVA(FR) analysis. The red diamonds are
the locus of errors suggested for these data sets using the
statistical methods of Khrabrov and Sonnerup [1998].
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in the magnetic overshoot controlled by finite Larmor radius
effects of the ions. Figure 1 illustrates that these FLR
structures provide a natural two-dimensional structuring to
the shock layer that was not retained in the fluid models
used above for the magnetopause current layer. Figure 11b
color codes the magnetic field strength. Figures 11b and 11c
emphasize the localized transverse ‘‘lumpy’’ scales of this
problem, similar to those more regular variants in Figure 1b.

The 2-D shock layer contains irregularly spaced 2-D
‘‘defects’’ that induce zones of high and low error for data
collected along worldliness with specific intercept and
slopes.
[43] Figure 11d is a statistical summary of the normal

recovery of all MnVA(B) and MnVA(FR) variance compu-
tations done on the hybrid shock solution, including all
different world lines and relative speeds of observer (which
do impact the Faraday residue techniques for getting the
normal and relative velocity when they get the normal).
The ordinate is the percentage chance that the systematic
error in the normal by MnVA(B) or MnVA(FR) is greater
than the angular figure of merit on the horizontal axis, Q*.
The thick horizontal bar is the 32% line. These curves
imply that the 1s estimate for systematic error on the
normal recovery is �35� for MnVA(B) or �20� for
MnVA(FR). The vertical red lines are at the average
positions of the distributions of errors. Thus, in the absence
of any knowledge about the 2-D character or world line
path through the shock, average MnVA(B) systematic error
is 28�; minimum variance via FR is an overdetermined
system with one more constraint (ET = C) than MnVA(B)
alone, and is a bit more robust with a 1s error width of
17.5�. These error estimates are very idealized and the FR
precision require three-axis E0 measurements (which are
not always available). It is clear now, why researchers often
have used model shock normals for case and statistical
studies when there is insufficient data to perform Rankine-
Hugoniot geometry determinations [Cairns et al., 1997;
Sigsbee et al., 2004].
[44] Comparison of Figures 11d and 9a illustrates the

improvement in shocks of the MnVA(B) normal recover
probability. The magnetopause layer normal recovery by
MnVA(B) is essentially flat in the error angle to the true
normal, whereas the shock distribution, while broader than
MnVA(FR)s, is still strongly peaked about the average
shock normal direction. This asymmetry would appear to
be the result of the requirement that the extremes of the
shock layer must satisfy the coplanarity theorem; the
magnetic field within the actual shock layer does not
satisfy the coplanarity theorem [Goodrich and Scudder,
1984; Scudder, 1995], determining a coherent variance in
the components of B perpendicular to the coplanarity
plane, partially dissuading the MnVA(B) technique from
choosing it as the minimum variance direction. Notwith-
standing this skew against the normal migration, the error
on any given world line, cannot be reasonably expected to
be less than 28�–30�. Even higher errors can occur as
indicated in Figures 11a–11c; such realism implies that
high reliability (95%) confidence error cone for a shock
normal using MnVA(B) would widen to 75�. Multiple
spacecraft passing through the shock layer, could deter-
mine the stationarity of the profile, to suggest how
anomalous a given world line’s sample of the overshoot
might be. Alternatively, the overshoots of supercritical
shocks could be edited out of the layer; however, to
completely remove the layer leaves the method open to
two nearly equally good MnVA(B) directions: that along
the normal and perpendicular to the coplanarity plane.
Such editing would leave MnVA(B) crippled by near or
actual eigenvalue degeneracy, resulting in worthless nor-
mals indiscriminantly chosen in the plane perpendicular to

Figure 11. Summary of MVA diagnosis and errors at 2-D
oblique supercritical shock using MnVA(B) and
MnVA(FR). (a) MnVA(B) error of normal recovery as a
function of angle of world line to the normal and position in
second dimension of current sheet traversal. (b) Color-
coded 2-D map of a snapshot of the magnetic intensity, B(x,
z, to). (c) Color-coded map of the component of B along the
simulation’s normal direction, Bx(x, z, to). (d) Cumulative
percentage distributions for MVA normal errors to exceed
Q*, segregated by MnVA(B) and MnVA(FR) techniques.
Cn = 15 km/s. Black lines in Figures 11b and 11c indicate
world lines identified in Figure 11a, where large errors or
normal recovery are indicated. Such trajectories pass
through major samples of z variations not contained in the
MVA one-dimensional model.
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the maximum variance direction. An alternate route for this
regime of eigenvalues has been explored recently [Scudder,
2005].

5. Why the Sensitivity?

[45] Part of the sensitivity of the minimum variance
determination of normals can be traced to a well-known
theorem about the roots of polynomials. They need not
necessarily depend continuously on the variation of the
coefficients [Wilkinson, 1959; Acton, 1990]. The eigenvec-
tors of the variance matrix are each associated with the roots
of the cubic characteristic polynomial of the variance matrix.
As the world lines through the same time-independent
structure smoothly change direction and/or speed there is
no assurance that the eigenvectors associated with the
inferred direction of minimum variance will always point
in the same physical direction, nor evolve slowly in
response to this slow variation in the coefficients of the
eigenvalues characteristic polynomial. Examples of this
sensitivity are illustrated by Sonnerup and Scheible
[1998], where removing one data point caused the direction
of minimum variance to rotate by 90�. As also discussed by
Sonnerup, when the smallest and middle eigenvalue become
comparable, the decision of the minimum eigenvalue and
hence eigenvector is a computational tossup with implica-
tions that a vector 90� away from the minimum variance can
be apparently chosen through round off errors.
[46] In addition to the capricious numerical issues asso-

ciated with the eigenvalue problem that are well known,
our present survey assays the impact on the recovery of the
current sheet normal of systematic and correlated variations
of all three components of E and B in the time series
witnessed by an observer moving through a layer contain-
ing variations transverse to the normal. While Maxwell
always requires r � B = 0, it is no longer generally true in
our 2-D layers that this equation is satisfied by a constant
component along the normal. Thus, while the minimum
variance direction may still be found, it has in this situation
no a priori theoretical connection to the direction of the true
normal of the current sheet. Such realistic and self-consis-
tent layers contain features that are outside the model
premises of MVA. These two-dimensional effects are
embedded in the variance matrix no matter what vector
time series it works on. Figure 2a indicates that this
systematic imprecision can commonly be in excess of
20� and often will be larger. With four physical examples
we have illustrated circumstances where the MVA normal
will depend on the precise coordinate where the world line
passes through the current sheet. It should be noted that
even when the relative phase speed along the current sheet
normal is determined, there remains insufficient informa-
tion to reconstruct the observer’s world line through the
layer. Together with the unknown size of the guide field
present in the layer, any given current sheet analysis has at
least three hidden variables which this study has illustrated
can affect estimates of the systematic errors of the normal:
these are (1) the total relative velocity, (2) the precise
location of the world line’s traversal of the current sheet,
and (3) the size of the guide field itself. Until multiple
spacecraft techniques are perfected to remove some or all
of these ambiguities, the systematic error on a current sheet

normal determination can hardly be construed as better
than 25� to the inferred direction from MnVA(FR) when
applied to measured 3-D electric and magnetic field time
series.

6. Summary

[47] We have examined the world line dependence of
MVA inferences of current sheet normals for a hybrid
oblique supercritical shock layer and Hall MHD simula-
tions of magnetopause layers with no, weak and strong
guide fields. We have demonstrated that the MVA can
have strong systematic errors that enlarge their systematic
uncertainties relative to those determined by the usual
eigenvalue error analysis. We have shown that MnVA(FR)
is more robust (but not error free) at determining the
geometry at the magnetopause than MnVA(B); at the shock
layer MnVA(FR) is still superior, compared to MnVA(B).
We have demonstrated that MxVA(E0) at layers with strong
magnetic shear such as the magnetopause or bow shock
are virtually without value, unless the transformation speed
to the current layer frame is known elsewhere, (which is
equivalent to solving MnVA(FR), so the critique of
MxVA(E0) remains. We have also shown that for the
simulations undertaken in this study that intermediate to
smallest eigenvalues for MnVA less than 2–4 accompany
particularly poor normal determinations and when either
MnVA(B) or MnVA(FR) yield eigenvalue ratios, l2/l1 >
10 that their 2-D systematic errors are minimized. We have
also emphasized that our evaluation of MnVA(FR) was
made while using B0 and E0 as fully measured vectors
(rather than proxies for E0, or spin plane components of E0

together with E � B = 0 as has been done in the past). In
this sense the rough rule of thumb developed here about
the angular precision of the normal from MnVA(FR) must
be considered a floor for the actual errors involved when
E0 � B0 = 0 is enforced or E0 = �U0 � B0 proxies are used
to compensate for unmeasured components of or the entire
vector E0.
[48] Finally, it should be emphasized that MnVA(B),

MnVA(FR) are part of a subset of tests based on conserva-
tion laws of conducting magnetized fluids that obtain
geometry by finding Galilean shifts and coordinate rotations
so that the Maxwell/Fluid equations and Rankine-Hugoniot
conservation laws are optimally satisfied at time stationary
layers that are assumed to be one-dimensional. Of this
subset MnVA(B) is the weakest since it involves only one
conservation law. MnVA(FR) is more robust, involving two
conservation laws. Formulations exist for picking the ge-
ometry and speed of 1-D discontinuities from time series
using more conservation laws and more observables along
the same time series [e.g., Viñas and Scudder, 1986] to
improve the overdetermination of the key observables of
average normal and relative speed. In the comparisons
presented here the technique with more constraints
(MnVA(FR)) yields lower errors and more routine retrieval
of the normal, even in the presence of 2-D effects. The new
conservation laws that add additional constraints, such as
normal mass flux, tangential momentum flux conservation,
and beyond should, in principle, yield more overdetermined
equations for the same world line, and should yield a better
average normal with fewer distractions from the almost
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unavoidable two-dimensional effects that defeat fewer and
simpler tests.

Appendix A

[49] All MVA techniques (or phase front techniques using
multispacecraft) suppose the current layers are locally
planar and stationary in the frame of reference where the
current layer is at rest. This assumption formally allows the
determination of an orthonormal basis by MVA in which
the minimum variance direction is usually taken to be the
local surface normal. In passing it should be noted that
MnVA(B) [Sonnerup and Cahill, 1968] and MnVA(FR)
[Khrabrov and Sonnerup, 1998] are specializations of MVA
associated with conserving the Rankine-Hugoniot equations
across discontinuities in continuum electrodynamics [Viñas
and Scudder, 1986]. As a practical matter these variance
techniques compare various components of the same vector
time series, (MnVA(B), or compare functions of compo-
nents of two or more vector fields, (MnVA(FR) or Rankine-
Hugoniot itself). It can often be the case that all three
components of the same vector field do not have the same
precision, and it is most certainly the case that the determi-
nations of E0 and B0 do not have either the same magnitude
or directional precision. Accordingly the minimum variance
procedures with real data must inform the theoretically
motivated minimization techniques what variations are of
significance and those that are not. To date this has usually
not been the practice and may be a factor in the quality of
information that is extracted from such analyses. Further,
the third (spin) axis of E0 when measured directly is usually
bolstered, if not defined, by imposing the assumption that
E0 � B0 = 0, a relation that is generally not expected to be true
in current layers. The central premise of these variance
techniques beyond the 1-D approximation is that the vector
fields in use are characterizing the same volume of plasma.
A subtle issue of a similar type would occur when using two
of the components of E from spin plane wires and deter-
mining the spin axis electric field with a much shorter boom
or an electron drift determination [Paschmann et al., 1998].
If the spin plane wires sense potential differences over
scales large compared to the Debye shielding lengths for
the photoelectron cloud about the spacecraft, while the on
axis boom retains some signal from the surrounding sheath
of the spacecraft and some ambient information, the triad, E0

is unsuitable for MnVA. If the vector E0 is assembled from
different techniques all three components should not be
treated on an equal footing in these MVA analyses. Exam-
ples of such compromises are the use of a returned electron
beam to measure one or more components of E while
relying on boom measurements for other components. The
drift technique returns information about the gyroaveraged
component of E that is a spatial average over the beam
electrons gyro path which in general can be much different
that the boom lengths for the remaining components. While
the spacecraft moves the boom sampled E components are
also spatial averages as well, but over spatial scales that are
much smaller than the gyroscale.
[50] Variance techniques always return answers; this

robustness must be tempered by an evaluation (1) that the
analyzed raw vector fields have components that are truly
compatible in the sense discussed above; (2) that the

minimization procedure is aware, before selecting the
eigenvectors, of the measurement uncertainties of all com-
ponents of all vector fields used in the analysis; and (3) that
the inverse information so robustly calculated has a robust
association with being an accurate representation of the
underlying geometry of the current layer. We are aware of
five attempts to reformulate the minimization problems that
attempt to balance the known measurement issues en route
to the normal determination [Lepping and Argentiero, 1971;
Acuña and Lepping, 1984; Viñas and Scudder, 1986;
Lindqvist and Mozer, 1990; Scudder et al., 1999].
[51] By contrast in this paper we are dealing with elec-

trodynamic variables determined by the numerical solution
of partial differential equations using fourth-order accurate
methods which determine E and B at comparable precision,
so that (1, 2) above are not involved in our survey. By
design our focus is concern (3). We thus use the standard
MnVA(B) and MnVA(FR) techniques for our examination
of the systematic errors involved in this paper. The inaccu-
racies reported here represent lower bounds to the general
sources of imprecision the experimentalist faces since they
correspond to perfectly calibrated data with no systematic or
unmatched calibration errors of B and E or the latter’s
proxies.
[52] In the case of MnVA(B), Gauss’s law under the 1-D

spatial premise is used to suggest that there is a preferred
direction, n̂, along which the projection of the magnetic
field, Bn, has the minimum dispersion compared to any
other direction on the unit sphere. The central assumptions

of this approach are (1) r � B � @Bn

@n
, and (2) that the causes

for time variations B detected in the spacecraft frame are
only those induced by convection of a one-dimensional
spatial structure that is otherwise actually time-independent
in its rest frame. Intrinsic time variations in the structure that
may be superposed on the spatial structure will modify the
derived direction of minimum variance determined from
such data in an unknown way.
[53] The MnVA(FR) technique seeks to exploit the

special time and space variation of a phase standing one-
dimensional structure in all frames: without loss of gener-
ality such a quantity must be a function of time and space
only through the bilinear combination of c = n � Cnt,
where n is the spatial coordinate along that only direction
where spatial variation is assumed to exist, and Cn is the
unknown relative speed of the structure along its normal as
determined in the observer’s coordinates, and t is the
observer’s time. This bilinear functional form is motivated
by the method of characteristics; Galilean relativity pro-
vides the identification of Cn as the phase front’s speed
(reckoned in the spacecraft frame). The bilinear form leads
to the simplification of Faraday’s Law from a partial
differential equation to a separable, and thus integrable,
ordinary differential equation relating total differentials of
B and the parts of E0 transverse to the unknown normal
[Khrabrov and Sonnerup, 1998]. An immediate vector
integration constant of this ODE is G0 = CnB

0/c � n �
E0 which is a different vector constant for each observer of
the layer recording E0, B0 along world lines with different
Cn. For an observer at rest in the frame of the discontinuity
GR is the rest frame tangential electric field. Gauss’s law is
also used in this formulation, so that MnVA(FR) represents
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a superset of constraining equations relative to MnVA(B),
while still itself remaining as a proper subset of the
Hugoniot conservation conditions across the front. The
MnVA(FR) technique determines a phase speed, Cn and
assigns the normal direction and by this the three compo-
nents of the conserved vector G0 so that its Pythagorean
variance is a minimum [Terasawa et al., 1996]. Like the
general Hugoniot problem [Viñas and Scudder, 1986] the
Faraday residue technique is a ‘‘mixed’’ technique requir-
ing information from different measurement variables and
hence errors. Clearly the derived quantities phase speed
and normal vector depend on the error signals that remain
in the vector coordinates used in the subsequent analysis.
Such experimental errors, while present in any real data
set, are not considered here.
[54] MxVA(E0) has occasionally been used to infer nor-

mals [Paschmann et al., 1986; Sonnerup et al., 1987;
Sonnerup et al., 1990; Hull et al., 2003]. The motivation
of this technique is that the tangential electric field in the
rest frame of the assumed one-dimensional current struc-
tures should be constant. In the rest frame of the current the
only variance of E expected would be preferentially along
the local normal of the current layer. However, the available
(or proxy) electric field, E0(t), is recorded in the time
domain on a spacecraft moving with respect to the layer;
if it were not so the observer would not traverse the layer.
Since jE0j � jB0j this unknown relative motion makes an
important Galilean correction to the rest frame electric field
inventoried. These contributions affect the computed co-
variance of E0, provided the direction of B is changing
through the layer. When B has strong shear, as at a
magnetosonic shock or at the magnetopause, this cross
frame dependence is ‘‘undone’’ by MnVA(FR) as it attempts
to correct for the relative phase velocity, transforming the
observed E0 back to the layer’s rest frame E before enforc-
ing conservation of tangential E. An additional problem
with proxy electric fields determined from the ions and the
unipolar contribution, is that they are only asymptotically a
measure of the electric field (in places where there is no
current density or pressure gradients) and not generally an
accurate measure of E0 through the current carrying layer
[Scudder, 1997; Scudder et al., 1999]. For those layers
where Hall signatures are not present [Sonnerup et al.,
1987] have argued that unipolar approximations to E0

should be acceptable. These authors have also used a
transformation of the proxy E0 data to the deHoffmann-
Teller frame to affect MxVA(EHT). Strong electric fields
seen in the auroral zone can occur across a very weakly
sheared magnetic interface [Hull et al., 2003]; while for-
mally MnVA(FR) should always determine a better normal,
MxVA(E0) results are acceptable in these small shear layers
since the nonzero frame transformation correction to the
observer’s sense of the correlated variance of all the
components of E0 and is small in this circumstance.
[55] This paper comments on MVA determinations at

layers where there is a perceptible magnetic shear as at
tangential, rotational discontinuities or shock layers. For
these layers the variance of the electric field is not
even approximately Galilean invariant, and unmodified
MxVA(E0) is totally without utility, since it is compromised
by systematic defects associated with the motion of the
spacecraft even were the layer precisely one-dimensional. If

the layer contains two-dimensional features, the normals
have additional distractions, since the motivational premise
of MxVA(E0) is an inadequate attempt at MnVA(FR).
[56] In all cases of MVA the object of analysis is the

3 � 3 variance matrix, C( , its unit eigenvectors, ej, and
eigenvalues, lj. C( , is computed from the time series of the
vector V(t) through the layer as the positive definite 3 � 3
symmetric variance matrix,

C( ij Vð Þ ¼ hViVji � hViihVji

determined from the components of the vector field, Vi(tk)
recorded at times (t1, t2, .., tn) through the layer. The angular
brackets denote the arithmetic average of the quantity
sampled over time. If we denote the individual components
in terms of their average Vj and deviations, dvj, C( simplifies
to become

C( ij Vð Þ ¼ ij dvð Þ � hdvidvji

An intuitive feel for the shaping factors of the variance
matrix can be obtained by noting its many similarities with
the more familiar moment of inertia matrix, Iij, of
mechanics. In terms of the separation dr(k) from the center
of mass of k equal masses, Iij is given by

Iij ¼ M dijh dr kð Þj j2i � ij dr kð Þð Þ
� �

where M is the total mass of the discrete masses. The first
term is the irreducible spherical assessment, S, of the
dispersion of mass in Iij, while the correction C( ij matrix
signals the quadrupolar departures from sphericity of the
mass distribution. When the first term is nonzero, the mass
distribution can store energy isotropically in rotation about
the center of mass. When the elements of C( ij are nonzero,
the mass distribution is not spherical, and will have
preferred orientations for simple rotation. The eigenvalues
lS of the spherical portion of S are triply degenerate, having
the common value lS = MSjlj, where the lj are the
eigenvalues of C( . Thus the eigenvalues of the moment of
inertia matrix are lk

I = lS � Mlk. These relations identify
the spectrum of the eigenvalues of the variance matrix as
controlling the existence of preferred axes of the moment of
inertia ellipsoid. If all lj are computationally distinct there
are three unique axes in space for simple angular motion.
For completeness, it may be seen that the direction of
maximum mass dispersion associated with MxVA(dr),
actually yields, via subtraction, the minimum eigenvalue
of the moment of inertia tensor. A cylindrical cigar shaped
uniform density mass distribution possesses its maximum
mass variance along the long axis of the cigar; accordingly,
by this reasoning, this axis is the easiest about which to
torque the cigar and, correctly, corresponds to the axis of the
minimum eigenvalue of Iij.
[57] Taking this analogy a bit further, one can inquire

what would happen if more mass was added to the rigid
body, but in such a way that the center of mass was not
modified. In general such an addition would increase the
variance along x, y, and z in a correlated way, that would
change the eigenvalue structure and reorient the principal
axes of the moment of inertia ellipsoid, determined by the
eigenvalues of a perturbed Iij

0. Since the preferred directions

C(

C(
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are determined by the quadrupolar correction terms, it is
now clear that new sources of mass dispersion must be
added either (1) equally to all three orthogonal axes, or
(2) in fixed proportions that reflect the original mass
dispersion to leave the eigendirections of the unperturbed
Iij unchanged. Insofar as MVA attacks problems outside of
the intended 1-D layers, there will be correlated additional
variances included in C( ij that reflect the 2-D character of the
observed electromagnetic field through the layer. Rather
special circumstances can be posited where the eigenvectors
of C( ij remain unchanged, but they would appear unlikely to
be realized in nature since the size of the variance of B0 or E0

along all three axes are not separately selectable, but
orchestrated by the augmented MHD equations that define
the structures being examined. This viewpoint also illus-
trates the challenge of various filtering strategies that have
been suggested to remove ‘‘extraneous’’ sources of variance
within the layers traversed.
[58] Comparing Iij and C( ij we see that the analogue of

displacement, dr(k), of individual equal masses from the
center of mass is the departure, dr(k) at each time of the
vector field, V, from it average value, hVi. It should thus be
anticipated that the rearrangement of any variation of
components about their mean value, or repartition amongst
the variances of the three components, or new sources of
variance, will almost without exception, affect the preferred
axes (eigenvectors) of the variance matrix in much the same
way as the redistribution of matter about the center of mass
will affect the orientation of the preferred axes of the
moment of inertia ellipsoid. We illustrate in the text that
the contrast of a 2-D layer with a 1-D layer is precisely to
add new, and correlated, sources of variance in the sampled
vector field, inducing a rearrangement of the eigenvectors.
[59] The matrix elements of Iij and C( ij are both real,

symmetric and, hence Hermitian with real eigenvalues.
From such eigenvectors a right-handed orthonormal basis
may always be constructed. The orientations of Ej in space
are determined from C( ij to within an arbitrary sign. In what
follows we choose the sense of the minimum variance
eigenvector E1 so that its x component is positive, the
direction of the intermediate eigenvector, E2 is chosen to
have its y component negative. The sense of the maximum
variance direction, E3 is then determined by the right hand
rule, generating a right handed orthonormal basis.
[60] If two eigenvalues of C( ij are actually degenerate the

Ek associated with them are not uniquely determined, with
infinitely many pairings of eigenvectors possible. In this
situation no peculiar direction can be determined in the
plane perpendicular to the third, distinct, eigenvector. How-
ever, in this circumstance most eigenvalue-eigenvector
routines supply eigenvectors without user intervention,
usually by implementing Gram-Schmidt orthogonalization
[e.g., Arfken and Weber, 2001]. Thus eigenvector analysis is
robust in that it always gives an answer, but its relevance to
the physical problem requires further screening based on the
relative sizes of eigenvalues. Degenerate eigenvalues can
occur even when the current layers are truly one-dimen-
sional. The minimum or maximum variance direction of a
3 � 3 matrix must be a part of this degeneracy when it
occurs. In the presence of such unresolved degeneracy the
utility of the variance technique for determining quantities
projected along the normal or transverse to it and the

maximum variance direction are totally useless. The linear-
ized error analysis for sensitivity to random error involves
the difference of the eigenvalues; near eigenvalue degener-
acies imply large error cones on the orientation of the
associated eigenvectors. Operationally, the question of de-
gree of degeneracy becomes how distinct is sufficient to
proceed with a physical assignment of a meaningful direc-
tion. Data analysis that is stymied without a good normal
often proceeds with quasi-degenerate solutions simply to
proceed with publication, rather than acknowledging that
the data will not support such an organization nor conclu-
sions dependent on it. A new approach for such layers has
recently been published [Scudder, 2005].
[61] When represented in their principal axes basis, C( is

diagonal, taking on the form

C(
0
ij ¼ dijlj;lj � 0

The minimum variance is equal to the minimum lj, which is
in turn the projection of the variance matrix onto the
minimum variance direction:

C(
0
11 � n̂ � C � n̂ � l1

[62] Using the eigenvectors of C( as a new basis, the
vectors of the original time series of V(t) can be rotated
into this primed coordinate system, V0(t), announced in the
literature without fanfare: ‘‘. . .transforming to boundary
normal (minimum variance) coordinates. . .’’. Such a proce-
dure is computationally deterministic and will always pro-
duce ‘‘a’’ minimum variance direction, n̂ � Ê1 along which
the root mean square variation of that component of V is
minimal. The text of this paper illustrates that such rota-
tions, while always possible, need not always be ‘‘the’’
physically desired coordinate system for the layer.
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Sonnerup, B. U. Ö., S. Haaland, G. Paschmann, B. Lavraud, M. W. Dunlop,
H. Rème, and A. Balogh (2004), Orientation and motion of a disconti-
nuity from single-spacecraft measurements of plasma velocity and den-
sity: Minimum mass flux residue, J. Geophys. Res., 109, A03221,
doi:10.1029/2003JA010230.

Terasawa, T., H. Kawano, I. Shinohara, T. Mukai, Y. Saito, M. Hoshino,
S. Machida, T. Nagai, and T. Yamamoto (1996), On the determination
of a moving MHD structure: Minimization of the residue of integrated
Faraday’s equation, J. Geomagn. Geoelectr., 48, 603–614.
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