Polar Audio Tape: VLF Plasma Waves

Whistlers


Whistlers were first detected during World War I. They are audio frequency electromagnetic waves produced by lightning. Once produced, these waves travel along closed magnetic field lines from one hemisphere to the other in the right-hand polarized, whistler mode of propagation. The duration of the whistling tone is related to the length of the propagation path. Because of anisotropies in the index of refraction, the wave energy is confined within a cone that makes an angle of 19(degrees)28' with respect to the local magnetic field.

On a high-resolution wideband spectrogram, the whistler's characteristic spectral feature is a clearly defined tone descending rapidly in frequency over several seconds. The name "whistler" refers to this characteristic whistling sound in the audio frequency range.

The first spectrogram is a 48-second wideband spectrogram taken from a nightside plasmaspheric pass on March 26, 1996. Initially the wideband receiver was connected to the electric Eu antenna, but was switched to the Bu magnetic search coil antenna at 07:59:06 UT. A series of brief whistlers is evident throughout this interval below 1.5 kHz.

The second spectrogram is a 48-second wideband spectrogram taken from a dayside plasmaspheric pass on May 10, 1996. The wideband receiver was connected to the magnetic loop antenna throughout this interval. Two clusters of whistlers of varying duration are seen below 8 kHz at 00:16:25 UT and 00:16:44 UT.

The third spectrogram is a 48-second wideband spectrogram taken from a nightside plasmaspheric pass on June 12, 1996. The wideband receiver was again connected to the magnetic loop antenna. Some whistlers can be seen up to 9 kHz (13:58:24 UT and 13:58:29 UT) and several more below 4 kHz (13:58:32 UT and 13:58:44 UT).