
Magnetospheric electron density model inferred from Polar

plasma wave data

R. E. Denton,1 J. Goldstein,2 J. D. Menietti,3 and S. L. Young1,4

Received 18 October 2001; revised 28 March 2002; accepted 14 May 2002; published 20 November 2002.

[1] Observations of the electron density ne based on measurement of the upper hybrid
resonance frequency by the Polar spacecraft Plasma Wave Instrument (PWI) are available
for March 1996 to September 1997, during which time the Polar orbit sampled all
magnetic local time (MLT) values three times. Using the entire data set, we bin the ne
values with respect to maximum field line radius LRE and radius R to generate an average
density model for 3.5 � L � 7.8 and 3RE � R � LRE. While our method does not assume
any particular functional form for the density dependence along field lines, we find that
the dependence can be roughly described by the power law form ne = ne0 (LRE/R)

a with
a having on average a value 0.2–0.9 in the plasmasphere (inner L region, 3.5 � L � 5.5),
and a value 1.6–2.1 in the plasmatrough (outer L region, L � 7). For instance, a = 0.8 ±
1.2 at L = 4.4 and a = 2.1 ± 1.4 at L = 7 (where the errors noted are overestimates). This
result is similar to a previous result based on the Polar PWI data but using a different
method. Alternately, the scale length for field line variation of density La � (LRE)/

ffiffiffiffi
a

p
=

5.5 ± 4.1RE across the entire region 4.4 � L � 7.8 (where the error noted is an
overestimate). The data is also separated according to MLT, and it is shown that in the
dawn sector the density is depleted and the radial dependence is steeper (larger a) than
for other MLT sectors. A similar result holds when the averaged Kp value is large
(>2). INDEX TERMS: 2768 Magnetospheric Physics: Plasmasphere; 2730 Magnetospheric Physics:

Magnetosphere—inner; 2731 Magnetospheric Physics: Magnetosphere—outer; 2753 Magnetospheric Physics:

Numerical modeling; 7819 Space Plasma Physics: Experimental and mathematical techniques; KEYWORDS:

electron density, field line dependence, plasmasphere
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1. Introduction

[2] While the average properties of the equatorial plasma
density in the magnetosphere have been at least approx-
imately described [Carpenter and Anderson, 1992; Gal-
lagher et al., 2000], the latitudinal density dependence
along field lines is less well known. Methods used to infer
the latitudinal density dependence along magnetic field
lines include in situ spacecraft observations, passive remote
sensing with whistler waves and ultra low frequency (ULF)
toroidal Alfvén frequencies [see Goldstein et al., 2001, and
references therein], and active remote sensing using radio
waves [Reinisch et al., 2001]. Results from the DE-1
spacecraft indicate that the normal situation is for the
electron density ne to be fairly constant along field lines

both in the outer plasmasphere (L ^ 3) and in the plasma-
trough (see discussion in Goldstein et al. [2001]). This
result is consistent with the constant density predicted for a
completely trapped population in a dipole field [Chan et al.,
1994] and is also roughly consistent with a diffusive
equilibrium solution (for example, Young et al. [1980]).
[3] In an earlier study, Angerami and Carpenter [1966]

used ground-based whistler wave data to infer a field line
density dependence consistent with diffusive equilibrium
(nearly constant) in the plasmasphere but ne / R�4 in the
plasmatrough. This last result is the so-called ‘‘collision-
less’’ dependence resulting from an exospheric equilibrium
with no equatorially trapped particles (consistent with a
Maxwellian at the top of the collisional region near the
surface of the Earth) [Lemaire and Gringauz, 1998, and
references therein]. However, Angerami and Carpenter’s
results depended on extrapolation of the radial dependence
down to an altitude of 1000 km (altitude of the Alouette 1
satellite), a procedure which may be questioned (see dis-
cussion in Goldstein et al. [2001]).
[4] Another technique is to infer mass density rm using

toroidal (azimuthal) Alfvén wave frequencies (see references
in Menk et al. [1999] and Denton et al. [2001]). Assuming a
power law form for mass density r = req(LRE/R)

a, Cummings
et al. [1969] calculated toroidal eigenfrequencies at geo-
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synchronous orbit (L = 6.6). Takahashi and McPherron
[1982], Engebretson et al. [1986], and Menk et al. [1999]
matched ratios of these frequencies to observed frequencies
to infer values of the equatorial mass density req and values
of a varying from 0–6. Price et al. [1999] and Denton et al.
[2001] used a more general method to infer mass density
without requiring the power law form.
[5] Very recently, radio imaging of the electron density

has been accomplished using the Radio Plasma Image
instrument on the IMAGE spacecraft [Reinisch et al.,
2001]. Reinisch et al. describe the density variation in terms
of a power law with respect to the magnitude of the magnetic
field B, ne / BK. For the data set they analyzed, K � 1/4 near
the equator, �1 at �40� latitude, and �2 at the highest
latitudes. Making the approximation that the dipole field B�
R�3, this translates to ne / R�3/4 near the equator, ne / R�3

at 40� latitude, and ne / R�6 at the highest latitudes (where,
however, B � R�3 may not be a good approximation).
[6] Goldstein et al. [2001] used observations of the

electron density ne based on measurement of the upper
hybrid resonance frequency by the Polar spacecraft Plasma
Wave Instrument (PWI) [Gurnett et al., 1995]. Assuming a
power law form for the electron density

ne ¼ ne0
LRE

R

� �a

; ð1Þ

where ne0 is the electron density at the equator, they used
the fact that the Polar spacecraft orbit crossed particular L
shells at two different radial locations to infer values of a.
They found on average a = 0.37 ± 0.8 for their plasma-
spheric data set (ne � 100 cm�3) but a = 1.7 ± 1.1 for their
plasmatrough data set (ne < 100 cm�3).
[7] For this paper we again use Polar PWI data, but this

time we bin the data with respect to L shell and radius R to
generate plots of the average electron density distribution as a
function of R/(LRE) without requiring the power law assump-
tion (1). (We then use the power law description to model the
results.) We define L shell such that LRE is the maximum
radius to any point along a field line. For a dipole field, LRE

would be the equatorial radius; however, we will be using a
nondipolar magnetic field model for which the maximum
radius may be off-equator (nonzero magnetic latitude). Our
data describe the magnetosphere in the region 3.5 � L � 7.8
and 3RE � R � LRE. In some respects our model is rather
crude. For instance, it averages at a particular L value the data
from both plasmasphere and plasmatrough (since the posi-
tion of the plasmapause varies with time). Such an averaging
procedure will clearly smear out the differences between
these two conditions and may lead to a characterization
which is not entirely accurate for either. Nevertheless, the
radial distributions can be used as a point of reference for
density modeling, and the information we find on the field
line distribution provides perhaps the most complete descrip-
tion yet for the density dependence close to the equator. An
outline of our paper is as follows: In section 2 we discuss the
measurement of ne and our data set. In section 3 we discuss
our results, and we summarize our findings in section 4.

2. Data and Method

[8] The electron density values used in this paper are
obtained using the Polar Plasma Wave Instrument (PWI)

[Gurnett et al., 1995]. The electron number density can be
determined from noise emission which has an upper edge in
frequency at the upper hybrid resonance (UHR) frequency
[Goldstein et al., 2001]. This noise band is most commonly
observed in the plasmasphere but can be detected in the
plasmatrough.
[9] Figure 1 shows the electron density ne as determined

by the PWI on 1 April 1996, 0402–0508 UT. Owing to the
nature of the Polar orbit [Goldstein et al., 2001] the
trajectory of the spacecraft crosses L shell values at two
different radii. In Figure 1, ne is plotted versus L for the
outer (solid curve) and inner (dashed curve) portions of the
orbit. Given a sharp drop-off in ne which occurs at L = 4.1
for the outer portion of the orbit but at L = 4.4 for the inner
portion, it is likely that both of these locations correspond to
the plasmapause. The difference in L value most likely
corresponds to the fact that the measurements are taken at
different local and universal time [Goldstein et al., 2001].
Note that there is a loss of the upper hybrid signal that
prevents ne < 100 cm�3 from being measured on the inner
portion of the orbit.
[10] The dropout of the signal mentioned in the last

paragraph occurs because the intensity of the noise bands
is often greatly reduced when Polar’s trajectory is outside
the plasmasphere and away from the equator, where the
condition fpe � fce is often not satisfied. Considering the
nature of the Polar spacecraft orbit during the period of our
study (1996, 1997) (see Figure 1 of Goldstein et al. [2001]),
this situation is most likely to occur when L is large but the
radius R is small. The radial position of Polar is R � 2RE on
the inner portion of the orbit where the upper hybrid signal
drops out on 1 April 1996. A second cause for loss of
potential density data occurs at the lowest L values, when
Polar penetrates deepest into the high-density plasmasphere.
In that case the preamplifiers located in the electric field
antenna spheres often oscillate with a broad band signal

Figure 1. Electron density ne as determined from the Polar
PWI data measured on 1 April 1996, 0402–0508 UT versus
L. The solid (dashed) curve represents the profile of ne
determined at the large (small) radius portion of the orbit.
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centered near the UHR frequency which obscures the
natural UHR signal [Kolesnikova et al., 2001]. Kolesnikova
et al. report that this problem occurs primarily at L < 3. Thus
both of these problems occur when the radius to the space-
craft position is small. For this reason we have chosen to
exclude data with R < 3RE from the averages used to
generate the density model.
[11] For this study, data were used from the entire time

period for which the PWI was in operation, from 26 March
1996 to 16 September 1997, during which time the Polar
spacecraft sampled all magnetic local time (MLT) values
three times (the orbit rotates in local time owing to the
Earth’s revolution, and on each Polar orbit two opposite
MLT values are sampled). Spectrogram images were
scanned manually and data points were chosen by clicking
with the mouse on the upper hybrid signature. For each data
point a field line mapping program was used to map the
spacecraft location to the position along the field line with
maximum radius R = Rmax; we then define L � Rmax/RE. In
cases for which solar wind data were available (92% of the
data) we use the Tsyganenko 1996 [Tsyganenko, 1995]
magnetic field model coupled with the International Geo-
magnetic Reference Field (IGRF) inner magnetic field
model [Langel, 1991]. Where the solar wind data were
not available we substitute the Tsyganenko 1989c model
[Tsyganenko, 1989] for the outer field. Data were discarded
for which the maximum radius along the field line and the
radius corresponding to minimum magnetic field amplitude
differed by more than 5%. Our data set is �10 times larger
than that used by Goldstein et al. [2001]; altogether there
are about 81,000 data points.
[12] We next generate a statistical model for the electron

density in the magnetosphere for 3.5 � L � 7.8. We have
not separated data in the plasmasphere and plasmatrough, so
this model represents the average density over these sit-
uations. Caution must be exercised in the interpretation of
the plasmatrough densities. The PWI can in principal
measure lower densities than those seen in Figure 1; the
lowest density measured in our data set is 0.1 cm�3.
However, as the outer trace (solid curve) in Figure 1
indicates, there can be a drop-off in signal in the plasma-
trough even at large radius, causing us to miss measure-
ments of low-density plasma (here with ne < 8 cm�3).
Because of this, our statistical results for equatorial density
may be an upper limit in the plasmatrough, especially when
the averages yield a value < 10 cm�3.

3. Results

[13] Figure 2a shows the equatorial electron density ne0
versus L determined in �L = 0.15 bins from L = 3.3 to 8.3.

Figure 2. (opposite) Plot of (a) equatorial electron density
ne0, (b) observation weight w (corresponding to the number
of observations in each �L = 0.15 bin), (c) density power
law index a (defined in equation (1)), and (d) effective field
line scale length La = LRE/

ffiffiffiffi
a

p
versus L. In Figures 2a, 2c,

and 2d the middle solid curve is the average value, while the
upper and lower solid curves show the mean plus or minus
one standard deviation. The large dashed curves in Figures
2a and 2c are a polynomial fit to the mean values.

DENTON ET AL.: MAGNETOSPHERIC ELECTRON DENSITY MODEL SMP 25 - 3



(Since ne rather than ne0 is measured, equation (1) is used to
convert each measurement of ne to ne0. Interpolation
between the values of a from Table 1, described below, is
used to get the value of a for a particular measurement.)
Figure 2b shows the number of observations (observation
weight) w in each bin. The number of observations is the
number of density data points measured and does not
directly corresponding to time, for instance. Also, time
periods for which there is no measurement of the upper
hybrid resonance do not contribute to w. The middle solid
curve in Figure 2a is the log average, while the upper and
lower solid curves are found from the log average plus or
minus one standard deviation (in log). The thick middle
dashed curve overlying the middle solid curve is the
polynomial fit to the log average which was used in the
analysis,

log10 ne0�mod ¼ 2:133þ 1:010L� 0:3656L2 þ 0:0419L3

� 0:00182L4; ð2Þ

for 3.3 � L � 8.3. However, an adequate fit to this data
would appear to be

log10 ne0�mod ¼ 4:2� 0:42L: ð3Þ

The upper thin dashed curve in Figure 2a marked ‘‘S’’ is
the saturated plasmasphere density of Carpenter and
Anderson [1992], while the lower thin dashed curve
marked ‘‘T’’ is Carpenter and Anderson’s plasmatrough
density (varying roughly as L�4.5 and with the density
matching the log average value at L = 8). Note that the
average ne is close to Carpenter and Anderson’s saturated
plasmapause density at L = 3.5. At larger L the average ne
is lower. One likely reason for this is that the spacecraft is
sometimes in the plasmatrough, but we note also that
Gallagher et al. [2000] found plasmaspheric densities lower
than Carpenter and Anderson’s saturated plasmasphere
values at large L. Moving in the opposite direction from
large L, the average ne0 increases more steeply with respect
to decreasing L than Carpenter Anderson’s plasmatrough
density profile, again because plasmasphere densities make
a relatively greater contribution to the average density at
smaller L.
[14] We now pick eight L values logarithmically spaced

so as to fill the region between L = 3.5 and 7.8. These L
values, Lbin, are used to bin the data by L, and their values
are given in Table 1 along with the widths of the bins. For

each Lbin we examine the electron density versus the
normalized radius R/(LRE). For each observed value of ne
within the L bin we first correct the density to account for
differing Lobs value, where Lobs indicates the maximum
radius on the field line connecting to the observation point.
We do this by multiplying by ne0�mod(Lbin)/ne0�mod(Lobs)
using equation (2). (The careful reader will note here that
we use a to get the model for ne0 but also use our model for
ne0 to get a. This is done by an iterative technique. In the
first iteration we assume a = 0 so that ne0 = ne for each
measurement. After calculating the a values in Table 1 we
subsequently use these values to correct ne0 in further
iterations.) Next, we choose 10 bins with R/(LRE) ranging
linearly from 3/Lbin to 1.0 (recall that we are only using data
with R > 3RE). We distribute the weight of each observation
linearly between adjacent bin centers. That is, if a particular
observation has R/(LRE) halfway between two R/(LRE) bins,
that particular observation contributes an observation
weight w (number of observations) of 0.5 to each of these
adjacent bins. In this manner we calculate a weighted log
average of the density values in each bin. We throw out
R/(LRE) data points with w < 20 to ensure that the results are
statistically significant.
[15] Figure 3 shows ne and observation weight w (num-

ber of observations) versus R/(LRE) for four of the Lbin
values listed in Table 1. In the plots of ne the middle solid
curve is the log average value, while the upper and lower
solid curves result from the mean plus or minus one
standard deviation (of the log). Note that there is a large
variation in ne from the upper to lower curves, a factor of
5 to 10. Note also that the distribution of observations (w)
is not uniform with respect to R/(LRE). In fact, if the
magnetosphere were time stationary and north-south sym-
metric and the latitude of orbit apogee fixed, then the
spacecraft would always cross a particular L shell at the
same value of R/(LRE). However, owing to the seasonally
dependent orientation of the dipole tilt and spacecraft
meridian, variations in the magnetic field configuration
caused by variations in the solar wind, and changes in
the Polar orbit with time due to precession, the spacecraft
does sample different values of R/(LRE) at a particular L.
We have examined the values of R/(LRE) sampled with
respect to various parameters. The strongest correlation
appears to be with time and appears to result because of
spacecraft precession. There was no significant correlation
with Kp or Dst. Note also that the coverage of R/(LRE)
varies significantly with respect to L. The coverage at
L = 5.5 is very good compared with that at L = 3.5 (owing
in part to our restriction R > 3/RE ).
[16] It can also be seen from Figure 3 that the density

appears to be flatter with respect to R/(LRE) at the low
values of L (L < 7.0) than at the highest value (L = 7.0). This
is shown more clearly in Figure 4, which displays the log
average density (solid curve) versus R/(LRE) for each of the
L = Lbin values listed in Table 1. The vertical range is a
factor of 6 in each frame so that the relative variation in ne
can be compared. Both the horizontal and vertical axes are
plotted using a log scale. The dashed lines in each panel are
a linear fit to log10ne versus log10R/(LRE), and these fits
yield the values of ne0 and a in equation (1) which are listed
in Table 1. These a values are plotted in Figure 2c as the
middle solid curve. The upper and lower solid curves

Table 1. Power Law Indices and Scale Lengths

L ne0
a a La

3.5 ± 0.2 530. � � 1.3 0.2 ± 3.4 8.1 ± 75.
3.9 ± 0.2 380. � � 1.4 0.4 ± 2.2 5.9 ± 15.
4.4 ± 0.3 230. � � 1.5 0.8 ± 1.5 4.8 ± 4.5
4.9 ± 0.3 140. � � 1.5 0.9 ± 1.2 5.2 ± 3.5
5.5 ± 0.3 83. � � 1.9 0.8 ± 1.8 6.4 ± 7.7
6.2 ± 0.4 39. � � 2.2 1.3 ± 2.0 5.5 ± 4.4
7.0 ± 0.4 15. � � 2.4 2.1 ± 1.4 4.8 ± 1.6
7.8 ± 0.4 7.7 � � 2.4 1.6 ± 1.6 6.1 ± 2.9

aThe notation ‘‘��’’ indicates that the uncertainty is a multiplicative
factor.
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Figure 3. Electron density ne ((a), (c), (e), and (g)) and
observation weight w ((b), (d), (f ), and (h)) versus R/(LRE)
for L = Lbin =3.5 ± 0.2 (Figures 3a and 3b), Lbin = 4.4 ± 0.3
(Figures 3c and 3d), Lbin = 5.5 ± 0.3 (Figures 3e and 3f ),
and Lbin = 7.0 ± 0.4 (Figures 3g and 3h).

Figure 4. Plot of ne versus R/(LRE) for each of the L = Lbin
values listed in Table 1. The solid (dashed) curve is the
binned log average (linear fit).
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represent the uncertainty of a from the linear fit [Press
et al., 1997], and the dashed curved line is a crude poly-
nomial fit

afit ¼ 1:66þ 0:565x� 0:465x2 þ 0:0630x3;

x ¼ 8� L;
ð4Þ

for 3.5 � L � 7.8.
[17] Larger a corresponds to a steeper increase in ne with

respect to decreasing R/(LRE) (equation (1)). As is clear
from Figure 2c, a is larger at larger L. This result is quite
consistent with the results of Goldstein et al. [2001], who
found a = 0.37 ± 0.8 for their plasmaspheric data set (ne �
100 cm�3), but a =1.7 ± 1.1 for their plasmatrough data set
(ne < 100 cm�3). In fact, Figure 2c appears to give
evidence of two regions with different values of a. Note
from Figure 2c that the average a is relatively flat with
respect to L in the region L � 5.5 (which usually corre-
sponds to the plasmasphere) and in the region L � 7
(which usually corresponds to the plasmatrough). There
appears to be a transition region with a mix of the two
types for 5.5 � L � 7. Around the average value there is a
large uncertainty in a (Table 1 and Figure 2c). Our
uncertainty values for a are probably overestimates since
the uncertainty in a for particular field lines may be less
than the uncertainty found from the entire distribution of
densities. In fact, Goldstein et al. [2001], who matched
pairs of density values to infer a, found lower uncertainties
(�a � 1) and they considered their uncertainties to be
overestimates.
[18] The variation of density along the field line can also

be described in terms of a scale length. We define the scale
length La �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ne0=ðd2ne=dl2

p
Þjl¼0, where l is the length

along the field line defined to be zero at the magnetic
equator. Assuming dne/dljl = 0 = 0 at the magnetic equator
(implied by equation (1)), La is the distance along the field
line from the equator at which the density is twice the
equatorial value. In a dipole field, La = (LRE)/

ffiffiffiffi
a

p
, and

based on the values of a already calculated, values of this
quantity are listed in Table 1 and plotted in Figure 2d.
From Figure 2d we see that La is relatively constant.
Averaging the last six values of La listed in Table 1 (for
which the uncertainty is relatively less), we find La = 5.5 ±
4.1 for 4.4 � L � 7.8 (where the error noted is an
overestimate).
[19] Figure 5 is like Figure 2 except that the data is

separated into four groups according to MLT. The thin
solid curve in Figure 5 corresponds to the midnight sector
MLT = 21–03, the thin dashed curve corresponds to
dawn MLT = 03–09, the thick solid curve corresponds
to noon MLT = 09–15, and the thick dashed curve
corresponds to dusk MLT = 15–21. It is clear that the
density is depleted in the dawn sector (MLT = 03–09)
and that the radial dependence of the density is steeper
there (a larger). These results are consistent with erosion
from MLT = 0–6 (leading to low density with steep radial
dependence at dawn) and refilling for MLT = 6–18
(leading to milder radial dependence at noon). Alternately,
one might say that there is a greater probability of
plasmatrough density in the dawn local time sector (the
plasmapause is typically at its lowest L shell near dawn).

[20] Similarly, in Figure 6 we have separated the data into
two groups, geomagnetically quiet times with hKpi < 1.2
(solid curve) and active times with hKpi > 2 (dashed curve).
Here hKpi represents a value of Kp averaged over the
preceding time t using the weighting factor exp � (t/t0),

Figure 5. Plot similar to Figure 2 with (a), (b) and (c)
corresponding to Figure 2a, Figure 2c, and Figure 2d,
respectively. Here the data is plotted for different MLT
regions, 21–03 (thin solid curve), 03–09 (thin dashed
curve), 09–15 (thick solid curve), and 15–21 (thick dashed
curve).
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where t0 = 1.5 days (following a similar procedure to that of
Gallagher et al. [1988]). Figure 6 shows that during more
active times (hKpi > 2), the density is depleted and the
radial dependence is steeper. Again, the steeper radial
dependence may be related to a greater proportion of
plasmatrough density. In both Figure 2 and Figure 6 the

density values below 10 cm�3 represent an upper limit, as
indicated in the last sentence of section 2.

4. Discussion and Conclusions

[21] Using measurements by the Polar spacecraft Plasma
Wave Instrument (PWI), we have calculated the average
magnetospheric electron density in the region 3.5 < L < 7.8
as a function of R/(LRE) (averaging over all quantities
except L and R/(LRE)). One of the interesting results of this
study is that the power law form seems to do an adequate
job of describing at least the average density variation along
field lines (Figure 4). Of course it must be remembered that
our study is limited to the region relatively close to the
equator. Equations (2) or (3) with equation (4) or interpo-
lation between the a values in Table 1 constitutes a crude
electron density model for 3.5 � L � 7.8. While the lack of
a plasmapause in equation (2) makes it unlikely that the real
plasma profile has at any time the dependence described in
that equation, it still can be used as a constraint on global
density models and for situations where a model is desired
with an average density (averaging over plasmasphere and
plasmatrough conditions). Caution should be exercised
where the model values for ne0 drop below about 10
cm�3, since the upper hybrid noise band is sometimes
undetectable at low densities (Figure 1).
[22] The values of a listed in Table 1 give information

about the field line variation of ne (see equation (1)). On the
basis of Figure 2c, a appears to have on average a value
0.2–0.9 in the plasmasphere (inner L region, 3.5 � L � 5.5)
and a value 1.6–2.1 in the plasmatrough (outer L region,
L � 7). For instance, a = 0.8 ± 1.2 at L = 4.4 and a = 2.1 ±
1.4 at L = 7 (where the errors noted are overestimates). Our
results are consistent with those of Goldstein et al. [2001],
who found on average a � 0.4 in the plasmasphere and a �
1.7 in the plasmatrough. As discussed by [Goldstein et al.,
2001], these values indicate that the field line dependence of
ne is roughly consistent with diffusive equilibrium in the
plasmasphere (a � 0) but that the steepness of density in the
plasmatrough is in between that of diffusive equilibrium and
kinetic models (a � 3–4). Of course, it should be remem-
bered that the uncertainty in our a values is quite large
(Table 1 or Figure 2c). These uncertainties are probably
overestimates, as discussed in the second to last paragraph
of section 3. Another important thing to note is that the data
coverage of R/(LRE) varies as a function of L (Figure 4), so
that from the point of view of R/(LRE) we are not sampling
exactly the same section of the field line at different L
values.
[23] We have also separated the data according to MLT; in

the dawn sector the density is depleted and the radial
dependence is steeper (larger a) than for other MLT sectors
(Figure 5). A similar result holds when the averaged Kp
value is large (>2) (Figure 6). It should be kept in mind that
these conditions correspond to a higher proportion of
plasmatrough data.
[24] The field line studied by Reinisch et al. [2001], L = 3,

is outside the range of our study. Nevertheless, interpreting
their results in terms of equation (1) as discussed in the
fourth paragraph of section 1, the value a � 0.75 implied by
their results in the vicinity of the equator is consistent with
our values for a. While their dependence at 40�, a � 3, is

Figure 6. Like Figure 5 except that the data is plotted for
different average values of Kp, hKpi < 1.2 (solid curve) and
hKpi>2 (dashed curve) (the averaging procedure is
described in the text).
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steeper than our average value for a, this location is also
getting rather close to the Earth (R = 1.76) and is never
sampled by Polar. (Actually, if we keep the data for R > 2
rather than R > 3, we find that a increases for L < 3, but we
have thrown out this data for the reasons discussed in the
third paragraph of section 2.) Our results on field line
variation of ne are neatly summarized by the result that
the scale length La �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ne0=ðd2ne=dl2

p
Þjl¼0 = 5.5 ± 4.1RE

over the fairly large region 4.4 � L � 7.8 (where the error
noted is an overestimate).
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