[PREV] [UP] [NEXT]

The Applied Physics Laboratory of Johns Hopkins University

The radio proximity fuze group soon outgrew the capacity of DTM and Tuve negotiated an arrangement with Johns Hopkins University such that JHU would assume contractual oversight of the project. In early 1942 JHU rented a large Chevrolet garage in Silver Spring, Maryland and established the Applied Physics Laboratory. Along with other members of the group, I was transferred to APL/JHU in April 1942, thereby qualifying as a plank-owner, as that term is used in the navy for a member of the crew who places a new ship in commission.

My own work was principally on developing what was termed a rugged vacuum tube, i.e., one that would survive acceleration of some 20,000 g as it was propelled through the barrel of a 5"/38 navy gun. The starting point was the miniature vacuum tubes that had been developed for use in electronic hearing aids by the Raytheon and Sylvania companies. I worked directly with tube engineer Ross Wood of Raytheon in the trial-and-error process of remedying the numerous shortcomings of the early tubes. I conducted field tests of each batch of tubes by putting them in a small cyclinder which was mounted in a projectile. These projectiles were then fired vertically by a converted 10-pounder gun at a test site in southern Maryland along the Potomac River. We recovered the projectiles with a post-hole digger and returned the tubes to the laboratory for detailed scrutiny. [In July 1942, I was commissioned a deputy sheriff of Montgomery County in order to legally carry a loaded revolver for coping with hypothetical hijackers on our daily expeditions to and from the test site.] I would then report the results to Ross by phone or if we had important conclusions, by personal visit by train to Newton, Massachusetts where he operated a pilot line. On most of these trips I would return to Silver Spring, Maryland with a batch of improved tubes. One of the most nagging problems was the breakage of the fine filaments. I reasoned that distortion of the structure that supported the filaments was the cause of the failure. In a moment of inspiration I sketched out a scheme for a minute coil spring (wrapped around a mandrel) to the free end of which one end of the filament would be welded. My hope was that the spring would maintain nearly constant tension on the filament during acceleration in the barrel of the gun and also that the tension could be such as to tune microphonics outside of the frequency pass-band of the amplifier. Wood executed this idea using the microscopic skill of the women who built these tubes. The scheme worked and became an essential feature of the millions of tubes that were manufactured during the three subsequent years of World War II.

By late autumn 1942, the first of the Section T radio proximity fuzes were coming off the production line. Realistic and extensive testing at the Dahlgren Proving Ground over the Potomac River ("air bursts" as the projectile approached the water) and past an aircraft suspended between two towers at Jack Workman's test facility near Socorro, New Mexico had been conducted. Despite numerous duds and premature bursts, it was estimated that the effectiveness of naval antiaircraft fire would be increased by a factor of the order of five if the proximity fuzes were substituted for the time fuzes then in use throughout the fleet.

In early November 1942, the Naval Bureau of Ordinance determined that the fuzes were ready for issue to the Pacific Fleet. Neil Dilley, Robert Peterson, and I were given spot commissions as USNR line officers with the rank of lieutenants, junior grade. Our job was to assist Commander William S. Parsons, USN, principal liason officer from Bu Ord during the development work, in introducing this new fuze to gunnery officers of combatant ships in the South Pacific. "Deke" Parsons (later the bombadier on the Enola Gay which dropped the first atomic bomb at Nagasaki) flew ahead to an unrevealed location in the Pacific theater. Dilley, Peterson, and I oversaw the loading of the first secret issue of some 3,000 carefully counted proximity-fuzed (also called VT fuzes as a disguise of their nature) 5"/38 projectiles into the hold of a troop ship at Mare Island near San Francisco. Within a week of receiving our commissions, signed personally by Frank Knox, Secretary of the Navy, we were at sea en route to a secret destination. The ship traveled without escort. I was able to keep track of our progress in latitude by elementary celestial observations and in longitude by the progressive change in mean time between sunrise and sunset and the occasional one-hour changes in ship's time.

About two weeks later we arrived in Nouméa, New Caledonia, headquarters of the Commander of the South Pacific Fleet (COMSOPAC). Parsons had already laid the groundwork and assigned us to various segments of the fleet. I was assigned as assistant gunnery officer on the staff of Rear Admiral Willis A. Lee, a task group commander of Task Force 38 (commanded by Admiral William F. Halsey) and Task Force 58 (commanded by Admiral Raymond A. Spruance). Admiral Lee was also type commander of battleships in the Pacific Fleet (COMBATPAC) with headquarters on the U.S.S. Washington. I arrived on the Washington only about two weeks after her celebrated role in the major engagement with a Japanese task force in the strait between Tulagi and Guadalcanal, thereafter called iron-"bottom" bay. Lee was the informal president of the Navy "gun club" and was acknowledged to be one of the leading gunnery officers of the U.S. Navy. He was thoroughly familiar, both theoretically and practically, with the fundamental ineffectiveness of antiaircraft weapons and of the, often fatal, fallacy of supposing that an attacking aircraft could be stopped by "filling the air with shrapnel". He was deeply impressed by my briefings on the VT fuzes and immediately recognized their potential in quantitative terms. I gave him a clear statement on the necessity of a clear field of fire (not over our own ships), of the expectation of at least fifteen percent duds and premature bursts (which posed no hazard to the firing ship), and of the air bursts which occurred as the projectile approached the sea at the end of flight. Also I informed him of the then prevailing doctrine that despite the potential effectiveness of proximity-fuzed projectiles for shore bombardment, such usage was forbidden on the security ground that duds might be recovered by the enemy and either duplicated by them or used as a basis for countermeasures, i.e., "jamming" by radio transmitters so as to cause premature bursts. He endorsed my written description of the properties of the new ammunition and immediately ordered a pro rata distribution of the available supply to all combatant ships of his task group. My job was to effect this distribution and to brief gunnery officers and commanding officers on their proper use. I encountered a wide range of understanding and lack of understanding of the range-error problem and varying degrees of acceptance. The toughest operational problem was the restriction on firing over other ships of the task group under the complex conditions of actual air attack.

After eight months of sea duty on the Washington and other ships I was ordered back to Bu Ord to serve as liaison officer with APL/JHU and to read and summarize combat reports from ships using the VT fuze against attacking aircraft. Finding such desk work onerous, I requested transfer back to the Pacific Fleet to help remedy the grave shortcomings of the fuzes -- most notably the large percentage of duds which were occurring as the useful shelf life of their batteries expired during the long and usually elevated temperature conditions of their transport by cargo ships from the states to combatant ships. I then made contact again with Admiral Lee on the Washington and with Commander Lloyd Muston, COMSOPAC staff gunnery officer, in Nouméa and engaged in setting up re-batterying stations at ammunition depots at Nouméa, Espiritu Santo, Tulagi, Guadalcanal, and Manus Island; and on ammunition barges at Eniwetok Atol, Kwajalein, and Ulithi. I also had temporary duty on a succession of destroyers to instruct gunnery officers and conduct tests of the fuzes. And I made frequent reports to Bu Ord on the status of the work and (usually urgent) requests for fresh batteries, tools, and equipment -- by air transport, if possible, to try to maintain the fleet's supply of workable fuzes. During this period I was on the Washington as assistant staff gunnery officer during the Battle of the Philippines Sea in which the ship successfully defended herself against kamakazi attack. In March 1945, I returned to duty at Bu Ord and as liaison officer at APL/JHU until my transfer to the inactive reserve as a Lieutenant Commander in March 1946, after the end of World War II hostilities.

The period 1940-1945 was a part of my life totally foreign to my previous aspiration to become an academic physicist. But I lost no energy grieving over the turn of events. On the contrary I plunged into "the war effort" with the patriotic fervor of those days and with the exhilaration of applying my knowledge of physics and mathematics and my laboratory skills to solving difficult problems of practical importance and national urgency. My service as a naval officer was, far and away, the most broadening experience of my lifetime. I had considerable responsibility in the real world of life-or-death and, for the first time, I dealt with a vertical cross-section of the human race on a one-to-one basis from apprentice seamen to admirals. I was deeply impressed by every such relationship, by the code-of-honor of the navy, and by the validity of military protocol. I gained a profound respect for the raw power and grandeur of the sea and a corresponding respect for seamen. Much of my boyhood reading was in that vein. As a high school senior, I had hoped for an appointment to the U.S. Naval Academy and our U.S. congressman, a close friend and former classmate of my father in college and law school, nominated me subject to passing the academic and physical examinations. But I failed the latter. Eleven years later I received a spot commission as a Lt. (j.g.) in the Naval Reserve under the relaxed wartime standards.

Among other things that I learned in the navy by close observation of my peers and superiors was how to make a sound decision when the basis for a decision was diffuse, inadequate, and bewildering. This lesson has served me well. Another strong and durable impression was the great gap between the life of a bureaucrat in Washington and the real situation on a combatant ship.

[PREV] [UP] [NEXT]